
OATION PAGE O~t
wi m A D- A 279 758 V orW0Pfe 0-kl~w a~x daa"OAM
Wnn ~ iUU **l Wge f~w Nwwo OpwmabA. Nw tpot 1215 jel MDvi 1 ##me. WW14,Abg ,V6U ,,. *5*n" "i~m~ &4" W4000 Vmh~ . a=.

1=3-EOTTP AND KIE

4. TIL5N . FUNDING

940325SI.11344, AMF 94ddc500_iC
DDC-I, DACS Sun SPARC/Solaris to 80186 Bare Ada Cross Compilei
System with Rate Monotonic Scheduling, Version 4.6.4

National Institute of Standards and Technology
Gaithersburg, Maryland

7. PEFRIN OR 1AION NM(S)AND 8. PERFORMING
ORGANIZATION

j~a jgýihte tandards and Technology
Gaithersburg, Maryland 20899
USA.-

9. SPONSORINGMONITORING AGENCY NAME(S) AND \'~ \%94-15729
Ada Joint Program Office
The Pentagon. Rn 3E 118r
Washington, DC 20301-3080

11. S P L MN TARY

12a. D3RIBUTIONIAVAILABILITY 12b DISTRIBUTION

Approved for Public Release; .. distribution unlimited

13. (Maxinxm 200

Host: Sun SPARCclassic (under Sokaris, Release 2.1)
Target: Intel iSBC 186/100 (bare machine)

14.$UJC IS. NUmBER OF

Ada programiing linguage, Ada Compler Validation Sunmmary Report, A 6 FP
~ r~* 3pb Val. Testing, Ada Val. Office, Ada Val. d, II y

17. EGUrrYIs. ECUITY19. ECUITY20, LIMITATION OF

UINCLASSIFED U)NCLASSI'FED 1UNCLASSIFED UNCLASSIFED
Rft~ byANSI S1d.

94 25 0 18Prssdb

AVF Control Number: NIST94DDC500_IC_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11344
DDC-I

DACS Sun SPARC/Solaris to 80186 Bare Ada
Cross Compiler System with Rate Monotonic Scheduling,

Version 4.6.4
Sun SPARCclassic => Intel iSBC 186/100 (Bare Machine)

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899 Accesion For

U.S.A. _ _ _ _ _ _ _ _ _

NTIS CRA&I
DTIC TAB

Unannounced 0
Justification

By

Distribution I

Availability Codes

Avail aý.d o r
Dist Spacial

AVF Control Number: NIST94DDC500_XC_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: DACS Sun SPARC/Solaris to 80186 Bare Ada
Cross Compiler System with Rate Monotonic
Scheduling, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel iSBC 186/100 (Bare Machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325S1.11344 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

Ada alidatforr-acl ity Ada Va idain Facility
Dr. David K. f .efsoi Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

-Ada V d•i• -Organization - da Joint Program Office
Dire or, vmputer & Software David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

NIST94DDC5JO0 C_1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Customer: DDC-I

Certificate Awardee: DDC-I

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/Solaris to 80186 Bare Ada Cross
Compiler System with Rate Monotonic Scheduling,
Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solarit, Release 2.1

Target Computer System: Intel iSBC 186/100 (Bare Machine)

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Customer Signature Date
Company DDC-I
Title

Ceiicat6 Awardee Signature Date
Company DDC-I
Title

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section.
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCclassic and is used for
downloading the executable images to the target Intel iSBC 186/100
(Bare Machine). The DDC-I Debug Monitor runs on the target Intel
iSBC 186/100 (Bare Machine) and provides communication interface
between the host downloader and the executing target Intel iSBC
186/100 (Bare Machine). The two processes communicate via
ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

TABLE OF CONTENTS

CHAPTER 1 1-1
INTRODUCTION o I-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT............ i-i
1.•2 REFERENCES o............ o...... 1-2
1.3 ACVC TEST CLASSES 1-2
1 .4 DEFINITION OF TERMS 1-3

CHAPTER 2 .oo... o..... o......2-1
IMPLEMENTATION DEPENDENCIES........ o 2-1

2.•1 WITHDRAWN TESTS o...... .o.o................... 2-1
2.2 INAPPLICABLE TESTS 2-1
2 .3 TEST MODIFICATIONS 2-3

CHAPTER 3 o.... *..... o.......o.... 3-1

PROCESSING INFORMATION. .o 3-1
3.1 TESTING ENVIRONMENT o o 3-1
3.2 SUMMARY OF TEST RESULTS ... o o 3-1
3.3 TEST EXECUTION * 3-2

APPENDIX AA-1
MACRO PARAMETERS ... A-i

APPENDIX B -...... o o.........o -o...... B-1
COMPILATION SYSTEM OPTIONS o.............B-1
LINKER OPTIONS B-2

APPENDIX C T .H C-iAPPENDIX F OF THE Ada STANDARD o.... C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro92] against the Ada Standard (Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Infornation Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A.

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programmina Lanauagg,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

lUG89] Ada Compiler Validation Capability User's Guidt, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units-are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be

replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.

Inapplicable Test A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-i815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].

Validation The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BD1BO6A
ADIB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2Bl5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of tl-e
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

2-2

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

Cn2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE220ID..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAMEERROR to be raised; this
implementation does not support external files and so raises
USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83AO7B B83A07C B83EOlC
B83EOlD B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BAl001A BA1101B BC1109A BC1l09C
BCl109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT) ;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report' s body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies conta'n uses of the types that
require a constraint. However, the gereric bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
(Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
$MAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V"I represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN 126 -- Value of V

SBIGID1 (l..V-l -> 'A', V => '1')

SBIGID2 (l..V-l => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (1..V-1-V/2-> 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (l..V-1-V/2 => 'A')

SBIGINTLIT (l..V-3 => '0') & "298"

SBIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRING1 ""'' & (l..V/2 => 'A') & '""'

SBIGSTRING2 "'"' & (l..V-l-V/2 => 'A') & '1' & #""I

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREAL BASEDLITERAL
"16:" & (l..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '""' & (l..V-2 => 'A') & '""'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
--

ACC SIZE :32
ALIGNMENT :1
COUNT LAST : 32767
DEFAULT MEM SIZE : 1 048 576
DEFAULT STOR UNIT : 16 -
DEFAULT SYS NAME : IAPX186
DELTA DOC : 2#1.0#E-31
ENTRY -ADDRESS : (140,0)
ENTRY ADDRESS1_: (141,0)
ENTRY ADDRESS2 : (142,0)
FIELD-LAST : 35
FILE TERMINATOR : ASCII.SUB
FIXEDNAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORM STRING : --
FORMSTRING2

"CANNOT RESTRICTFILECAPACITY"
GREATER THANDURATION : 75 000.0
GREATER THAN DURATION BASE LAST : 131 073.0
GREATERTHAN_-FLOAT_BASE LAST : 16#i.O#E+32
GREATERTHAN-FLOATSAFE-LARGE : 16#5.FFFF_FO#E+31
GREATERTHAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGALEXTERNAL FILE NAME1 : \NODIRECTORY\FILENAME
ILLEGALEXTERNALFILENAME2

THIS-FILE-NAME-IS -TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGE LENGTH : -1
INCLUDEPRAGMAl

PRAGMA INCLUDE ("A28006D1.ADA")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.ADAO1)
INTEGERFIRST : -32768
INTEGERLAST . 32767
INTEGERLAST PLUS 1 32768
INTERFACE LANGUAGE. : ASM86
LESSTHAN_DURATION : -75 000.0
LESS THANDURATION BASEFIRST : -131 073.0
LINE TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINECODESTATEMENT

MACHINE INSTRUCTION' (NONE,m_NOP);
MACHINE CODETYPE : REGISTERTYPE
MANTISSADOC : 31

A-2

MAXDIGITS :15
MAXINT : 2147483647
MAX7INT PLUS_1 :2147483648
MIN-INT7 : -2147483648
NAME : SHORT SHORTINTEGER
NAMELIST : IAPX186
NAMESPECIFICATION1

DISK$AWC_2: (CROCKETTL.ACVC11 .DEVELOPMENT)X2120A
NAMESPECIFICATION2

DISK$AWC_2: (CROCKETTL.ACVC11.DEVELOPMENTJX212OB
NAMESPECIFICATION3

DISK$AWC_2: (CROCKETTL.ACVC11. DEVEWOPMENTJ X3119A
NEGBASEDINT : 16#FFFFFFFF#
NEW-ME14 SIZE : 1 048 576
NEW STOR UNIT :126
NEW SYS NAME : IAPX186
PAGE -TERMINATOR : ASCII.FF
1tACORDDEFINITION :RECORD NULL;END RECORD;
RECORDNAME : NOSUCHMACHINECODETYPE
TASK SIZE : 16-
TASKSTORAGESIZE :1024
TICK- : 0.000 000_125
VARIABLEADDRESS : (16#0#,16#1FF9#)
VARIABLE ADDRESS1 : (16#4#116#IFF9#)
VARIABLEADDRESS2 : (16#8#,16#IFF9#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

5 THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and inserts the
generated objects into the curren progrm library. Compiler options are provided to allow the
user control of oplimnzamon. rin-time checks, and compiler input and output options such as list
files, configuration files, the program library used, etc.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 3.1 provides a list of all compiler
options. wad Section 51 describes the source and configuraion files.

If any diagnostic messages am produced dunng the conmplation, they are output on the diagnostic
flle and on the curn output file. The diagnostic file and the diagnostic messages are described
in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal repr.,serntaon of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell;

$ ada {coption>) <source-ftle-uname

where the options and parameters are:

35

DACS-80x86 User's Guide
Ada Compiler

OPTION DESCRIPTION REFERENCE

.[nolautojuline Specifies whether local subprograms should be 5.1.1
inline expanded.

-check Conrols rmn-tine cherks. 5.1.2
-coaufeuiratlonjfe Specifies the configuration file used by the 5.1.3

-[(nodebug Includes symbolic debugging information in S.IA
pmroram Library. Does not include symbolic
informaon.

-[nolxtpointjo.rading Generates fixed point rounding code. Avoids fixed 5.1.5
point rounding code.

.[nolfloat.allowed Flap generation of float instructions as 5.1.6
error if selected.

-[nollibrary Specifies program library used. 5.1.7
-[nollist Writes a source listing on the list file. 5.1.8
.1noloptimize Specifies compiler optimization. 5.1.9
-[nojprogess Displays compiler progress. 5.1.10
-[nolxref Cretes a cross reference listing. 5.1.11
-[nolsave source Copies source to program library. 5.1.12
-[nojtargptdebug Includes Intel debug informaton. Does not include 5.1.13

Intel debug information.
-unit Assigns a specific unit number to the compilation 5.1.14

(must be free and in a sublibrary).
-recompile Interpret the file name as a compilation unit body

that must be recompiled from library. 5.1.15
-specification With -recompile interpret file name as a

compilation unit specification rather than body. 5.1.16

Examples:

$ ada -list testpboq

This example compiles the source file testprog.ada and generates a list file with the name
testprolit

$ ad& -library a•_libz&Y test

This example compiles the source file testada into the library myjibrary.

Default values exist for most options as indicated in the following sections. Option names may
be abbreviated (characters omitted from the right) as long as no ambiguity arises.

36

DALS-0 0x86 User's Guide
Afa Compiler

aource-filei~ume

The Ada compiler has one mandatory parameter that should specify the Ada source file.
This paramet specifies the text file containing the source text to be compiled. If the file type
is omitted in the source file specification, the file type ".ada" is assumed by default.

The allowed format of the source text is described in Section 5.1.

Below follows a descripton of each of the available options to the invocation of the Ada
compiler.

5.1.1 -[nolauto inline

-auto inline local I global
-nouato inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subpmgrm has less than 4 object declarations and less than 6 statements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C.2.3). LOCAL
specifies that only inline expansion of locally defined subprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

S.1.2 -check

-check I ckeyword> = ON I OFF (,ckeyword = ON I OFF]
-check ALLzON (default)

-check specifies which run-time checks should be performed. Setting a nm-dne check to ON
enables the check, while setting it to OFF disables the check. All run-time checks are enabled by
defaulL The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.
DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.
INDEX Index check.
LENGTH Array length check.
OVERFLOW Explicit overflow checks.
RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available.

37

DACS-8xS6 User's Guide

Ada Compiler

5.1.3 .-confilgurato_file

-conflgurationAfile <file-spec>
-confl•guradon.file conflg (default)

This option specifies the configuration rile to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings, set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default. Section 51.2 contains a description of the configuration file.

5.1.4 -[noldebug

-debug
-nodebug (default)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.5.11.

5.1.5 -[nojflxpointrounding

-flxpointrounding (default)
-nofixpoint rounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded, but this
may be avoided with -noflxpoint rounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types, when the target is 80386PM or 80486PM.

5.1.6 -[nolfloataallowed

-float allowed (default)
-nofloit allowed

Float instructon generation may be flagged as errors, if -nofloat is selected. This is for use in
systems, where no floating point processor (nor emulator) is available. Notice that TEXTJO uses
floats in connection with FLOATiO and FIXEDO.

38

DACS-8Ox86 User's Guide
Ada Compiler

S.1.7 -library

-dbra7 c<fle-specn
.ibrary Sadl-brnry (deut)

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibrary and ancestors up to toot) is also implicitly specified.

If this option is omitted. the sublibrary designated by the enviromnental variable ada-library is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[nollist

-list
.nolist (default)

-list-specifies that a source listing will be produced. The source listing is writen to the list file.
which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced. regardless of LIST pragmas in the program or
diagnostic messages produced.

5.1.9 -optimize

-optimize (<keyword> = on I off (,-ckeyword> = on I off)]
-optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords are: (casing is irrelevant)

all All possible optimizations ame invoked.
check Eliminates superfluous checks.
cse Performs common subexpression elimination including common

address expressions.
fct2proc Change function calls returning objects of constrained array types

or objects of record types to procedure calls.
reordering Transforms named aggregates to positional aggregates and named

parameter associations to poitional associations.
stack..beight Performs stack height reductions (also called Aho Ullman

reordering).
block Optimize block and call frumes.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

DACS-80x86 User's Guide
Ada Compiler

5.1.10 -(no]progress

-noprogress (default)

When this option is given, the compiler will output data about which pass the compiler is
currenty running.

5.1.11 -[nolxref

-%ref
.noxref (default)

A cross-refeince listing can be requested by the user by means of the option .xref. If the -xref
option is given and no severe or fatal errors are found during the compilation, the cross.reference
listing is written to the list file. The cross-reference listing is described in Section?.

5.1.12 .[nolsave..source

-save source (default)
-nosave source

When -save.source is specified. a wpy of he compiled source code is placed in the program
library. If -nosave source is used, source code will not be retained in the program library.

Using -nosave-source, while helping to keep library sizes smaller, does affect the operation of
the recompiler. see Chapter 7 for more de ails. Also, it will not be possible to do symbolic
debugging at the Ada source code level wilt the DACS-80x86 Symbolic Ada Debugger, if the
source code is not saved in the library.

S.1.13 -[noltargetLdebug

-target debug
-notartdebug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currently the linker does not support the OMF debug information.

This option may be used when debugging with standard OMP tools (i.e.. PICE).

40

DACS-80x86 User's Guide
Ada Compiler

"&.1.14 -unit

-unit = <unit-number>

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile

-recompile

The file name (source) is interpreted as a compilation unit name which has its source saved from
a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

S.1.16 -specification

-specification

Works only together with -recompile, see Section 5.1.15.

5.2 Compiler Input

Input to the compiler consists of the command line options. a source text file dnd. optionally, a
configuration file.

52..1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646). where each line is terminated by
-ither one of the following termination sequences (CR means carriage return, VT means vertical
tabulation, LF means line f"4, and FF mcans form feed):

"* A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT. LF. or FF.

"• Any of the characters VT. LF, or FF. immediately preceded amd followed by a sequence of zero
or more CRs.

In general. ISO control characters are not permitted in the source text with the following
exceptions:

41

DACS-80x86 User's Guide
Ada Compiler

"- • The horizontal tabulaton (HT) character may be used as a separator between lexical units.

• LF, VT. FF. and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the contents of the
configuration file (see section 5.1.3). The control characters CR. VT, LF, and FF are not
considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

S.22 Configuration File

Certain processing characteristics of the compiler, such as format of input and output, and error
limit. may be modified by the user. These characteristics am passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file (config) is not accepted by the compiler in the following cases:

"* The syntax does not conform with the syntax for positional Ada aggregates.
"* A value is outside the ranges specified.
"* A value is not specified as a literal.
"* LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOMMARGIN.
"* The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATION-RECORD is
record

IN FORMAT: INFORMATTING;
OUT FORMAT: OUTFORMATTING;
ERROR LIMIT: INTEGER;

end record;

type INPUT FORMATS is (ASCII);

type INFORMATTING is
record

INPUT FORMAT: INPUT FORMATS;
INPUT LINELENGTH: INTEG-ER range 70..250;

end record"

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
TOP MAGIN : INTEGER range 4.. 90;
BOTTOM MARGIN : INTEGER range 0.. 90;
OUT LINELENGTH : INTEGER range 80..132;
SUPiPRESS ERRORNO : BOOLEAN;

end record:

The outformaning parameters have the following meaning:

1) LINES_PER_PAGE: specifies the maximum number of lines .itten on each page
(including top and bottom margin).

2) TOP_,MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

3) BOTTOM.MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER-PAGE - TOPMARGIN - BOTTOM-MARGIN.

4) OUTLINELENGTH: specifies the maximum number of characters wrinen on each line.

Lines longer than OUTLINELENGTH ae separated into two lines.

5) SUPPRESS-ERRORNO: specifies the format of error messages (see Section 5.3.5.1).

Thc name of a user-supplied configuration file can be passed to the compiler through the
configuration.file option. DDC.-I supplies a default configuration file (config) with the following
content:

43

DACS-80x86 User's Guide
Ada Compiler

((ASCII. 126). (48.,3,100.FALSE). 200)

Lin

L~aesl

per
page

Outjine-length

Figure S-1. Page Layout

S.3 Compiler Output

The compiler may produce output in the list file, the diagnostic tfie, and the current output tie.
It also updates the program library if the compilation is successful. The present section describes
the text output in the three files mentioned above. The updating of the program library is
described in Section 5.4.

The compiler may produce the following text output

1) A listing of the source text with embedded diagnostic messages is written on the list Me,
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reference listing is written on the lis file, if -xref is active and no severe or fatal
enfors have been detected during the compilation.

4) If there are any diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than warnings are written on the current output file.

44

DACS,4Oxa6 User's Guide
Ada Compiler

-.3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
".Uis. The file is located in the current (default) directory. If any such rile exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a new list file is created.

The list file may include one or more of the following pans: a source listing, a cross-reference
listing, and a compilation summary.

The pans of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

5.3.1.1 Source Listing

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

"* Pans of the listing can be suppressed by the use of the LIST pragma.

"* A line containing a construct that caused a diagnostic message to be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.3.2.1).

3) Which options wene active.

4) The hill name of the source file.

5) The full name of the current sublibrary.

6) The number of source text lines.

45

EMMOMMI

DACS-80x86 User's Guide
Ada Compiler

7) The size of the code produced (specified in bytes).

8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated" message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated" otherwise.

53.13 Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators. and character
literals of a compilation unit. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below. Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiatons of generic units, the visible declarations of the generic unit ae included in the
cross-reference listing as declared immediately after the instantiation. The visible declarations are
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The following am not included in the cross reference listing:

"* Pragma identifiers and pragma argument identifiers.

"• Numeric literals.

"* Record component identifiers and discriminant identifiers. For a selected name whose selector
denotes a record component or a discriminant. only the prefix generates cross-reference
information.

"* A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

"* The identifier with, at most, 15 characters. If the identifier exceeds 15 characters, a bar ("0")
is written in the 16th position and the rest of the characters are not printed.

"* The place of the definition, i.e., a line number if the entity is declared in the current
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

"• The numbers of the lines in which the entity is used. An asterisk ('") after a line number
indicates an assignment to a variable, initialization of a constant, assignments to functions. or
user-defined operators by means of RETURN statements. Please refer to Appendix B.3 for
examples.

46

DACS.4x86 User's Guide
Ad& Compiler

S.3 The Diagostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".err'. It is located in the current (default) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, each followed by a line
showing the number of the line in the source text causing the message, and a blank line. TheM=
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnosc messages together with the enoneous source text.

5.3.21 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
warnings also appear on the current output file. If a source text listing is required. the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately after the source line causing the
message. Messages not related to any particular line am placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines ame ordered by increasing source line numbers. Line number 0 is
assigned to messages not related to any particular line. On the curret output file the messages
appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

Warning: Reports a questionable consmruct or an error that does not influence the meaning of the
program. Warnings do not hinder the generation of object code.

Example: A warning will be issued for constructs for which the compiler detects will
raise CONSTRADTMERROR at run time.

Error. Reports an illegal :onstruct in the source program. Compilation continues, but no object
code will be generated.

Examples: most syntax errors most static semantic errors.

Severe Reports an error which causes the compilation to be terminated immediately.
error. No object code is generate.

Example: A severe enor message will be issued if a library unit mentioned by a
WITH clause is not present in the current program library.

47

"DACS•xS86 User's Guide
Ada Compiler

Fatal Reports an error in dhe compiler system itself. Compilation is terminated immediately
error. and no object code is produced. The user may be able to circumvent a fatal error by

correcting the program or by replacing program constucts with alternatives. Please
inform DDC-1 about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the ERROR.LIMiT
parmeter of the configuration file (see section 5.22) is considered a severe error.

53.232 Fornmt and Content of Diagnostic Messges

For certain symnacically incorrect constmacs. the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.
The pointer line contains a pointer (a cam symbol A) to t offending symbol or So an ilega

character.

The text line contains the following information:

"* the diagnostic message identification "*"

"* the message code XY-Z where

X is the message number

Y is the severity code, a leter showing the severity of the error

W: warning
E: error
S: severe error
F: fatal error

Z is an integer which, together with the message number X. uniquely identifies the compiler
location that generated the diagnostic message; Z is of impormnce mainly to the compiler
maintenance team - it does not contain information of interest to the compiler user.

The message code (with the exception of the severty code) will be suppressed if the
parameter SUPPRESSERRORNO in the configuration file has the value TRUE (see
section 52.2).

* the message ite the text may include one context dependen field that contains the name of
the offending symbol; if the name of the offending symbol is longer than 16 characters only
the first 16 characters am shown.

Examples of diagnostic messages:
181W-3: Warning: Exception CONSTRAINT-ERROR will be raised here

320Z-2: Name OBJ does not denote a type

535Z-0: Expression in return statement missing

48

DACS-80x86 User's Guide
Ada Compiler

1508S-0: Specification for thils package body not present in the library

5.4 The Program Ubrary

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library. the user is referred to Chapter 3.

The compiler is allowed to read from all sublibraies consatuting the current program library. but
only the current sublibrary may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that
no errors are detected by the compiler.

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the current subbibrary. it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit. i.e.:

- when there is no library unit of that name

- when there is an invalid declaration unit of that name

- when there is a package declaration, generic package declaration, an instantiated package. cr
subprogram of that name

Compilation of a library unit which is an instantiation

A possible existing declaration unit of that name in the curnmt sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler

Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. A new
subunit is inserted.

5.4.2 Incorrect Compilations

If the compiler detects an error in a compilation unit. the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units the program library will not be updated for any of the compilation units.

5.5 Instantiation of Generic Units

This section describes the rules after which generic instantiation is performed.

5.3.1 Order of Compilation

When instaniating a generic unit, it is required that the entire unit, including body and possible
subunits. be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (1).

5.5.2 Generic Formal Private Types

The present section describes the treatment of a generic unit with a generic formal private type,
where there is some construct in the generic unit that requires that the corresponding actual type

must be constrained if it is an array type or a type with discriminants, and there exists
instantiations with such an unconstrained type (see ARM. Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected wher he instantiation is compiled, in
other cases when a constraint-requiring construct of the generic unit is compiled:

1) If the instantation appears in a later compilation unit than the first constraint-requiring
construct of the generic un., the error is associated with the instantiation which is rejected
by the compiler.

2) If the insutmiation appears in the same compilation unit as tie first constraint-rnquiring
construction of Ut generic unit, there are two possibilities:

a) If there is a consu"aint-requiring construction of the generic unit after the instantiation,
an error message appears with tie instantiation.

b) If the instantiation appears after all constraint requiring constaucts of the generic unit
in that compilation unit. an error message appears with the constraint-requiring
construct, but will refer to the illegal instantiation.

50

DACS-80x86 User's Guide
"Ada Compiler

3) The ihnmiation appears in in earlier compilation unit than the first consraint-requirng
constructon of the generic unit, which in that case will appear in the generic body or a
subunit. If the istantiation has been accepted. the instantiation will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instaniation ame located in the same sublibrmy, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantation. The unit containing the instantiation is not changed. however,
and will not be maked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

S.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

"The Ada compiler supports a "modified la-ge" memory model for data references. The
"modified large" memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compilcd into a differernit hieramhical level. Imel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the root
sublibrary.

* The Ada compiler supports a large memory model for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of th code portion of a

program is not restricted.

"* The space available for the static data of a compilation unit is 64K - 20 bytes.

"* The space available for the code generated for a compilation unit is limited to 32K words.

"* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

"* Each source file can contain, at most, 32,767 lines of code.

"* The name of compilation units and identifiers may not exceed the number of characters given
in the INPUTLINELENGTH parameter of the ofiguration file.

"* An integer literal may not exceed the range of LONGINTEGER, a real literal may not exceed
the range of LONG_FLOAT.

51

DACS-80x86 User's Guide
Ada Compiler

The number of formal parameters permitted in a procedure is limited to 127 per parameter
specification. There is no limit on the number of procedure specifications. For example, the
declaraton:

procedure OVER-LIMIT (INTEGER01,
INTEGER02,

INTEGE;166 : in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDER-LIMIT (INTEGER01 : in INTEGER;
INTEGR02 : in INTEGER;

INTEGER1.66 :in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

5.8 Compiler Code Optimizations

DDC-1's Ada compiler for the iAPX 80x86 microprocessor family generates compact, efficient
code. This efficiency is achieved, in pant by the compiler's global optimizer. Optimizatons
performed include:

"* Common sub-expression elimination
" Elimination of redundant constraint checks
"* Elimination of redundant elaboration checks
"* Constant folding
"* Dead code elimination
"* Optimal register allocation
"* Selection of optimal jumps
"* Optional run-time check suppression

52

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, run-time code. and any
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for coitrolling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time
System. which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker.

S ada-link (<option>} <unit-name>

where the options and parameters are:

Ada Linker Options

OPTION DESCRIPTION REFERENCE

-[noIdebug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.

-enable task trace Enables trace when a task terminates in 6.5.28
unhandled exception.

-exceptionspace Defines area for exception handling in task stack. 6.5.29
-[nojextract Extracts Ada Object modules 6.5.14
-interrupt~entry table Range of interrupt entries. 6.5.27
-library The library used in the link. 6.5.7
-[nojlog Specifies creation of a log file. 6.5.9
-It-segment size Library task default segment size. 6.5.23
-it stack size Librwy task default qack size. 6.5.22
-np _segentsize Main program segment size. 6.5.25
-mp_stackslze Main program stack size. 6.5.24
-[noinpx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link options. 6.5.6
-priority Default task priority. 6.5.18
-reserve stack Size of reserve stack. 6.5.21
.rms Select Rate Monotonic Scheduling Run-Tune 6.5.13

Kernel (optional).
-[nolrootextract Using non-DDC-I units in the root libramy. 6.5.10

53

DACS-80x86 User's Guide
The Ada Linker

-onOirts Includes or excludes the run-time system. 6.5.12
usearChlib Target libraries or object modules to include 6.5.4

in target link.
-selective-link Removes uncalled code from final program. 6.5.8
.-3 ogn Produce sign on and sign off messages. 6.5.30
-stopbefore-link Performs Ada link only. 6.5.5
-tasks Maximum number of tasks or non-tasking 6.5.17

application.
-task storage_size Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
-timer Timer resolution. 6.5.20
-time-slice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Cas.ng is significant for options but not for options keywords.

Note: -Several sirnulaneous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the current output file and on the optional
log file. The messages am output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

A warning reports something which does not prevent a successful linking, but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit. Warnings ame only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of warnings issued.
even if the issued warnings have not been output.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for inszance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hypothetical recompilations am
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive processes. Both am automatically carried
out when issuing the link command ada.link.

54

.. DACS-8- 6 User's Guide
The Ada Linker

The fir•t process constitutes the Ada link process and the second constitutes the target link

process.

The Ada link process

"* retrieves the required Ada object modules from the program library,

"* determines an elaboration order for all Ada units,

"* creates a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

"* creates a shell script that carries out the target link process (i.e.. dlnkbldx86). The locate/build
phase is an integral part of the target link.

If the option -stop-before-link is NOT specified (default), the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop.beforeJlink is specified, all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.1 Temporary Files

The following temporary files are in use during the link phase:

<main-program>_ink.com The shell script which invokes the target linker.

<main-program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main.pmgram>._ucd.o The object code generated from the RTS configuration
options (see Section 7.2).

<main.pmgram>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit.

55

"DACS-80x86 User's Guide
The Ada Linker

f ' /IAda U / _

Codea

Th fllwig omonn s mae u s th undnes-,

A) USysmU

2) r t f

b) Tsngat(r i

Figure 6-3. The Linking Process

The following components make up the run-time system:

1) User configurable portion of the RTS

a) User configurable data (UCD) arnd
b) User configurable code (UCC)

2) Permanent part of dhe RTS

a) Non-tasking RTS (rI I lib) or
b) Tasking RTS (rl21ib)
c) RMS Tasking MT (r13.Iib)

The User Configurable Code defined by the environmental variable ada ucc Jib is included in dhe
link. If no tasking has been specified, then the RTS non-tasking library (rl .lib) will be included.
If tasking has been specified, then support for tasking will be included (r12.lib or, when -rms.
rl13.lib).

56

DACS-80x86 User's Guide
"The Ada Linker

The output of the linker step is an absolute executable object fide with the extension ".dat" and
a map file with the extension ".mpS".

6.2.2 Environmental Variables

When a link is executed, a number of riles are referred to and most are accessed through
environmental variables. The locateobuild phase uses the control file $adaucc_dir/config.bldddci,
the remaining variables ame:

VARIABLE PURPOSE

ada-system-library Identifies the root library where the system compilation units reside.

ada-library Identifies the default library used by all DACS-80x86 tools. It is the
lowest level sublibrary in the program library hierarchy.

ada-root-lib Identifies the OMI library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having to extract each unit from the system library for each link.

adajrl I Jib Idenifies the OMF library for the Permanent Pan of the non-tasking
version of the Run-Time System.

adarl2jib Identfies the OM]F library for the Permanent Part of the tasking version
of the Run-Tune System.

ada-rl3_1ib Identifies the OMF library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Tune System.

adautcc_lib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada.template Identifies the template file for the Linker.

ada-ucc.dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was installed (ada86, ada186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be
ada186 root lib, and the RTS UCC library environmental variables for the 8086 version would
be ads86ucclib.

57

-* DACS-80x86 User's Guide
The Ada Linker

63 Run-Tina System Overview

The Run-Time System for DACS-80z86 is defined as all code and data, other than the code arid
damn produced by the code generator, required to make an embedded system application operate
properly on a specific hardware system.

In general, there are two major components that make up the Run-rine System.

1) Code and data assumed to exist by the code generator. This is hardware independent and
known as the RTS Permanent Pan.

2) Code and data tailoring the application with respec to the cluracteristics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Part.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed, i.e., if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Part does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Pan available for different development
targets. Also, the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for complete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the parts of the Run-Time System that must be
configurable for hardware independence, freeing the user from major rewrites whenever the
Run-Time System is retargeted while, stll allowing for almost unlimited adaptability.

Four important features of the rnm-time system are:

"* It is small

"* It is completely ROMable

"* It is configurable

"* It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

"* Executive, i.e., the start-up mechanism

"* Storage Management

"* Tasking Management

"* Inht/Output

"* Exception Handling

58

DACS-80x86 User's Guide
"The Ada Linker

"* Run-Time Library Routines

"* Package CALENDAR support routines

The rn-time system (RTS) can be configured by the user through Ada Linker command options.
The Ada Linker will generate appropriate data structures to represent the configured characteristics
(UCD).

Two versions of the RTS ame supplied, one including tasking and one excluding tasking. The
linker selects the RTS version including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Otherwise, the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies, but this leaves some freedom
here and there to arbiwanly choose between two or more alternatives. This arbitrary is in the
DACS-80x86 linker controlled by the spellng of the involved library units, in order for "free"
units to become alphabetically sorted.

Recompiling from scratch, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also attempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated after the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.S Ada Linker Options

This section describes in detail the Ada linker option and parameters.

6.5.1 The Parameter <unit-name>

<unit-name,

The <•unit_name> must be a library unit in the current program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that Qmit-name> is the
identifier of the procedure. not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-8Ox86 User's Guide
The Ada Linker

6.5.2 The Paran-ter <recompiation-spec>

The syntax of <recompilation-spec> is:

<unitspec,[-bodyl-spedficationl,...I

This parameter tells the linker to perform a consistency check of the entire program using the
hypothetical recompilation of all units designated in the <cecompilation-spec>. The link process
in this instance is no actually performed.

The unit-spec> is a list of unit-names (wildcanis ae allowed), separated by comma (Q) or plus
(+). Each unit-name should include an option to indicate if the body or specification is to be
hypothetically compiled (-spec is the default).

6.53 Required Recompilations

If the consistency check found that recompilations are required, a list of required recoinpilaions
is written to the current output file or to a text file if the -log option is specified (the name of
the text file is indicated in the log file, line 8). The list will include any inconsistencies detected
in the library and recompilations required by the hypothetical recompilations specified with the
options -declaration and .body.

The enmies in the list contain:

1) The unit name.

2) Indication of what type of unit (declaration unit, body unit. or subunit).

3) If the unit is specified as recompiled with the -declaration or -body option. it is marked
with "-R-'.

4) The environmental variable of the sublibrary containing the unit.

In the recompilation list the units ae listed in a recommended recompilation order, consistent with
the dependencies among the units.

6.5.4 -searchlib

-searchlib <fle name*: {,(,ie.naume,)

The -uuarchlib option directs the Ada Linker to search the specified 80x86 target libraries for
object modules in onrer to resolve symbol references. The 80x86 target libraries for object files
will be searched before the DACS Run-Time System (RTS) library normally searches for rnm-time
routines; in this way one can replace the standard DACS RTS routines with custom routines.

The -. archllb option is also intended to specify libraries of modules referenced from Ada via
pragma INTERFACE.

60

DACS-8Ox$6 User's Guide

"MaTe Ada Linker

S adaolink -searchlib interface-lib p

Links the subprogram p. resolving referenced symbols first with the target library interfacejlib
and then with the standard RTS target library.

6.53 -Mop-beftreJink

.top beftrejink

The -stop before link option allows the user to introduce assemblers and linkers from third
parties or to odirwse configure the link to suit the application. The link is halted with the
following conditions

• ser configurable data file, <main>_ucd.o, is produced with the default or user specified
I; option values included.

"• The elaboration code is contained in die <main>_elabcode.o file.

"* The shell script file that contains the link command is present and has not been executed. The
file's name is <main>..ink€com.

"* The temporary Ada object file(s) used by the target linker ae produced. These objects are
linked and deleted when <main> link.com is executed.

"* With -selecve link die object files comprise all Ada units incuding those from the root
library. At this point it is possible to disassemble the "cut" object files using -object with the
disassembler.

To complete the link, the <main>rink.com script must be executed. To use third party tools, this
file may have to be modified.

6..6 -options

-options qparmeter>

-options allow the user to pmn options onto the target linker

61

DACS-0x86 User's Guide
"Run-Time System

65.7 4-bary

.lnbry SadaUibrary (default)

The -ibrarv option specifies the current sublibrary. from which the linking of the main unit will
take place. If this option is not specified. the sublibrary specified by the environmental variable
adalbrary is used.

6.5J1 .uubidve link

.seecdJve-ink

This extracts all required object modules from the Ada library (including the root library) and cuts
out exactly those pans that ame actually called, in order to make the resulting target program
considerably smaller. If a program uses e~g. PUT-JINE as the only routine from TEXTIO, the
contribution from the TEXT-IO object module will only contain PUT-LINE (and whatever that
needs). Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link. by stopping the linking before the target link
phase (-stopbefore link), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables are not removed.

Only "level 1" subprograms may be removed. Nested subprograms (that ame not called) ame to be
removed during compilation using the -optimize option. Nested subprograms are only removed.
if the routine in which the nesting occurs is removed.

6.S.9 -[nollog

-log (<CfIe-speci.]
-nolog (default)

The option specifies if a log file will be produced from the front end linker. As default, no log
file is produced. If <file-spec> is not entered with .log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

• An elaboration order list with an entry for each unit included. showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp. and the dependencies are
shown. Furhermore, any elaboration inconsistencies will be reported.

* A linking summary with the following information

• Parameters and active options.

• The full name of the program library (the currnt sublibrary and its ancestor sublibraies).

62

Ls m n n ami lm I

DACS-80x86 User's Guide
"The Ada Linker

• The number of each type of diagnostic message.

- A termination message. stating if the linking was terminated successfully or unsuccessfuLly or
if a consequence examination was terminated.

- Diagnostic messages and warnings ame written on the log rile.

If recompilauions ame required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text Mile is written in the log rile, line 8.

The log file consists of:

"* Header consisting of the linker name, die linker verson number, and the link time.

"* The elaboration order of the compilation units. The units ae displayed in the order elaborated
with the unit number, compilation time, unit type. dependencies, and any linking errors.

"• If recompilations are required, the units that must be recompiled are listed along with its unit
ty.pe and sublibrary level

"• The linking summary that includes the main unit name, the program library, any recompilations
that are required. and if any errors or warnings occurred.

6.5.10 .[nojroot-extract

-root-extract
-noroot extra0t (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the Sadarootjlib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the Sada.root_lib will no longer
match the Ada system library and -root extract must be specified in order to link from the Ada
system library.

6.5.11 -[no]debug

-debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is
required to enable symbolic debugging. It -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

. DACS-80x86 User's Guide
The Ada Linker

into dt chosen sublibrary, thus saving disk space. Note that any unit which should be
symbolically debugged with the DDC-l Ada Symbolic Cross Debugger must also be compiled with
the -debug option.

6.S.12 -[nolrts

.rts (default)
-nofts

The -"ts option directs the Ada Linker to include the appropriate Run-rime System (RTS) in the
link. -norts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-Time System from the link allows te user to do an additional link
with a private copy of a custom RTS. The Ada Linker may report unresolved references to RTS
routines, but will still produce a relocatable object file.

63.13 -rms

.rms

This option selects the Rate Monotonic Scheduling Tasking Kernel (if tasking is selected). The
default is to use the Standard Tasking Kernel. This feature is supplied as an option.

6.S.14 -[nolextract

-extract (default)
-noextract

This option to the linker allows the user to specify that program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many
objects have not changed since the last link and does not warn the linker to waste time extracting
them.

To use this featur, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the current directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tool. A new target link
can thn be performed using a combination of newly extracted objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that sham common and rarely modified libraries and when relinking programs
that have had only a few units modified.

64

DACS-80x86 User's Guide
•.T Ada Linker

".6.5.15-emlt

-tenmplae c1Ute-name>
-template SadaempLate (default)

The template file is known to the linker via the environmental variable ada template. DDC-I
supplies a default template file as part of the standard release system. Please refer to appendix H
for derailed infornauton.

6.S.16 -npx

-4p" (default)
-nonpx

The -npx option specifies that the 80x87 (8087, 80287, or 80387) numeric coprocessor is used
by the Ada proigrw•. When -npx is specified, the 80x87 is intalized by the task initialization
routine, the floating point stack is reset during exception conditions, and the 80x87 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada Linker.

_-X oUSED ean

= 0 - 80x87 is not used
= I - S0x7 is used

6.5.17 -tasks

-tasks [a]
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not
specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include support for tasking.

Ada Imenupt tasks identified with prama I4NTRUTHANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number
of tasks. Note that the main pogram, which may implicitly be considered a task, will not run
under cotrol of the tasking kernel when -notasks is specified. See also -rms option.

Configurable Data

For -tasks, the linker generates the following configurable daut:

65

DACS-80x86 User's Guide
"The Ada" Lier

50 ?c3S V Task

(MICS)

If -am Ls

aactiva.

U

Example:

S adalink -tasks 3 p

Link the program P. which has at most 3 tasks. including the main program.

6.5.18 -priority

-priority n
-priority 15 (default)

The -priority option specifies the default priority for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is f•m 0 to 31.

Priorites can be set on a per task basis dynamically at run time. See section E.I (Package
RTSEntryPoints) for more details.

Configurable Data

The Ada Linker generates the following constant data:

Example:

S adasink -tasks -priority 8 p

Link the subprogram P which has the main program and tasks running at
default piaority 8.

66

DACS-80x86 User's Guide
aTh Ada Linker

-6.5.19 �nime.sice

-timesslice (r) (default no tine slicing is active)

The -time slice options specifies whether or not time slicing will be used for tasks. If specified.
R is a decimal number of seconds representing the default time slice to be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Duration'Small
S R 2.0 and must be g reat than or equal to the -time linker opton value. T ime slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Tune slicing cam be specified on a per task basis dynamically at run-time. See Section E. I
(Package RTS-EntrxPoints) for mome details.

Time slicing is not applicable wtdess tasking is being used. This means that the -tasks option
must be used for -time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

_PTmd;sL1CZ_Omz I ZULW7

- 0 - 3ot &me salinq
- - TUne sliclaq

;Cýud?ýgSLIZc I Absolutet Imteor

0 represeming the number Y that satisfies Y * DURATION'SMALL m R

Example:

S ada.link -time slice 0.125 -tasks p

0 Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer option specifies the resolution of cals to the Run-Tune System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for mor information). The number.
R, specifies a decimal number of seconds which have elapsed for every call to TIMER. The
default TIMER iesoludon is one millisecond. R must be in the range DURATJON'SMALL< R
<2.

67

DACS-80x86 User's Guide
The Ad* Linker

"Confgurable Data

The Ada Linker generates the following 16 bit constant

C-TZin

representing the number Y that satisfies Y * DURATION'SMALL-R

6.5.21 -reserve-stack

-reserve stack In]

The -reserve stack option designates how many words are reserved on each task stack. This
space is reserved for use by the RTS, which does no checking for stack overflow. This reserved
space also allows the RTS to function in situations such as handling a storage error exception
arising from stack overflow.

The -reserve stack option also reserves part of the main program stack size, specified by the
linker option -mpstack-size.

Configurable Data

The Ada Linker generates the following integer constant

CD M S•.S_ : nmm

Examples:

$ adaJink -reserve stack 200 -tasks p

0 Reserve 200 words from each stack for use by the RTS.

6..2.1 -IL.tack..si7e

-it stack size n
-It_.stack.size 500(default)

The -It stack size option designates the library task default size in words. A library task is
formed when a task object is declared at the outermost level of a package. Library tasks ame
created and activated during the initial main program elaboration. (See the Ada Reference Manual
for more details).

68

DACS-"0x86 User's Guide
The Ada Linker

. For each library task, the representaion spec:

FOR Task.object'STORAGE-SIZE USE N;

can be used to specify the library task stack size. However, if the representation spec is not used.
the default library task size specified by 4t-stacksize will be used.

For efficiency masons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack Normally, the segment which contains the library task
stack is allocated just large enough to hold the default library task stack. Therefore, one must use
the option -it-stack-option or the pragma LTSEGMENSIE to reserve more space within the
segment that may be used for nested tasks' stacks. (See the implementation dependent prgma
LTSEGMENT-SIZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link. and the maximum segment size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:

_ ,., sý7TACCs3 2 ZWMW

Example:

$ adalink -It stack size 2048 -tasks p

0 Link the subprogram P using a 2K words default library stack size.

6.5.23 -lt.stack_.size

.it segmnt size n
-It_segment size (Il.stacL.size + 20 + exception,.stackspace) (default)

This parameter defines in words the size of a library task segmenL The library task segment
contains the task stack and the stacks of all its nested tasks

The default value is only large enough to hold one default task stack. If 4t stack size is used and
specifies a value other than the default value, 4t segment ize should also be specified to be the
size of <taskmstacksize> +

<otoa_of_nestedtaskssizes:> +
<20_wordsoverhead> +
excepdon_stackspace.

Note that the task stack size specified by the 'STORAGE-size can be representation spec or by
the option -Itstack.size.

Dynamically allocated tasks receive their own segmem equal in size to the mp-segment-size.

69

I-DACS-80x86 User's Guide
The Ada Linker

The range of this parameter is limited by physical memory size., task stack size allocated during
the build phase, and the maximum segmem size (64K for all except the 386/486 protected mode.
which is 4 GB).

Conflgurable Data

The Ada Linker generates the following data sructum:

_cDL, zaszmmTszzz ' n a

Example:

$ ada-fink -t segment-size 2048 -tasks p

Link the program P using a library task segment size of 2K words.

6.5.24 -mp..stacksize

.mp_stack_size n

-mp.Sack-size 8000 (default)

The -rnp stack size option specifies the main program stack size in words.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), the maximum segment size (64K for all excep the
386/486 protected mode, which is 4 GB), and the size of mpsegment.size.

Configmuble Data

The Ada Linker generates the following data structures for nontasking programs:

cnIPeSTACIVx mm7

P._WSAc SXhT aa? ,h-.t add.tS... . L/of .s~ack i

For tasking programs, the Ada Linker generates the same structures but limits the size to 1024
words. This stack is only used for the execution of the system startup code and elaboration.
At main program activation, a segment for the main program equal to the size specified by -
-.np segment..slze will be allocated from the dynamic memory pool and a stack for the main
program equal to the size specified by -mp_stack_size will be allocated from the memory
pool.

70

In-III

DACS-80x6 User's Guide
The Ada Linker

Example:

$ ada.Jlnk -mp stack size 1000 p

-Link the subprogram P with a stack of 1000 words.

6.5.25 -mp.Jegnten~sze

-niP-segmentýslze a
-tunp-segment siz 8100 (Default)

The -upsegme~ntsize option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setting can be calculated from the formula-~

mp..segment-.size = mp-stack..size +
overhead + (tasks - 1)
(overhead.+ task.szorage..size)

Normally. the main program segment size can be set to the size of the main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains dhe main program stackL Therefore, when the
main program contains nested tasks, the main program stack segment must be extended via the
-mnp segmnent size option.

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only). and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp-.segment-.size.

Configurable Data

The Ada Linker allocates the ..CD..MP.STACK (see the -nip stack,_siz option) within a data
segment called ..CD-vfP.STACK..SEGMENT:

-CRDI~STAKSZUffNT imp STACK

)W-SACKSTAR? WSM S X=C SIZE iSS finITS

Example:

S adajlink -tas~ks -mp segment-size 3200 program ~a

Links the subprogram PROGRAMA, which contains tasks nested in the main program
allocating 32,00 words for the main program stack segment.

71

DACS-80x86 User's Guide
The Ada Linker

6.5,26 -taagrage.dze

.task-stoaesize 1024 (default)

This option sets the default storage size in words for stacks of tasks that are not library tasks.
This value can be overridden with a represenon clause.

The range is limited by the size of the ltsegment-size (if it is a subtask to a library task), or by
mp-segmene-size Cif it is a subtask to the main pogamm).

Confluawable Data

The Ada Linker generates the following data structure:

_..TAS._sTeA zzAA nmSIZE

6.5.27 -interrupt-entrytable

.interruptentry table LH

The -interrupt_entry table option specifies the range of interrupt vector numbers used by the
Ada pwgram in interrupt tasks.

The number, L. specifies the lowesz numbered inerzmpt handler. The number; H, specifies the
highest numbered interrupt handler. The range for low and high imerupts is 0 to 255.

Configurable Data

If -interrupLentry_tble is specified. the Ada Linker will generate the following data strcture:

cDLOU)ITRU (LI "L÷)'

_CDUZGZUTW"7 Pf (U)+)*

-word reserved
toor ZnteeruptIVector

If the user ever detects unresolved references to the symbols:

_CDLOWNTMUPT
_CDHIGHINTERRUPr
_CDInTE UPTVECrOR

72

DACS-80x86 User's Guide
"- The Ada Linker

"the Afta piopi contains sUndard inermix tasks for which the RTS requires the above data

MUM .Z You must felink the Ada progrnm specifying the -interruptentrytable option.

Example:

S adajlk -tasks -interrupt_entrytable 5,20 p

Links the subprogram P. which has standard Ada interupt entries numbered 5
through 20.

6,52S 4no]e I task&M

-enable task trac
-noenae.task trace (default)

This option instructs the exception handler td produce a stack trace when a task terminates because
of an unhandled exception.

Configurable Data

_PTRACI;ZN"A31ZD

- 0 - task trace dfsabled
- 1 - task trace enabled

6.5.29 -excepionspace

-exception.space n
-exception-space OaOh (default)

Each stack will have set its top area aside for exception space. When an exception occurs, the
exception handler may switch stack to this area to avoid accidental overwrite below the stack
bottom (which may lead to protection exceptions) if the size of the remaining part of the stack
is smaller than the N value. Specifying a value -0 will never cause stack switching. Otherwise an
N value below the default value is not recommended.

Configurable Data

-~CUTZXOZsTh(-TCKSPACa-SZZz %

Note that this value is added to all requests -,r task stack space, thus requiring an increase in the
requirements of the appropriate segmem's size

73

DACS.80zS6 User's Guide
The Ma d nker

Wben this opaSo is specifIed the linker will generate code to ouqput a sign on message, before
the Ada elaboration is irniated and a sign off message when the target program has tenninated
successfully. if the program tenninaes with an ncaught excepton. the sign off message is not

The sign on message camits of:

START [ranp] cpwgram name>

and the sign off message

STOP (<sCtinp> C<rogram nmc>

The <strinp may cain spaces, e.g.

-ign._o "Test 3" (remember the quotes).

This facility is vety useful to separate output from several target programs run after each other,
and to veriy that a program dh produces litle or no ouqtut has actually been loaded and run
successfully.

74

"og

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFF_F8#E256 .. 16#0.FFFFFFFFFFFF_F8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-I

APPENDIX F - IMPLEMENTATION-DEPENDENT CHA.ACTERISTICS

This appendix describes the implemention-dependent characteristics of DACS-80X86Th as required
in Appendix F of the Ada Reference Manual (ANSWIM[L-STD-1815A).

F.I Implementation.Dependent Pragmas

This section describes all implementation defined pragmas.

F.I.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that are invalid in Ada subprogram identifiers. This pragnma must be used in conjunction with
pragma INTERFACE. i.e.. pragma INTERFACE must be specified for the Ada subprogram name
prior to using pragma INTERFACE._SPELLING.

The pragma has the format:

pragma INTERFACESPELLONG (subprogram name, suing literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid characters for Ada identifiers.

Example:

function RTSGeotDataSegment return Integer:

pragma INTERFACE (ASM86, RTS Ge*tDataSegment);
pragma INTERFACE SPELLING (RTS GetuataSevment, "RISMGS?GetDataSegment");

The suing literal may be appended 'NEAR (or 'FAR) to specify a particular method of call. The
default is 'FAR. This suffix should only be used. when the called routines require a near call
(writing 'FAR is however harmless). If 'NEAR is added, the routine must be in the same segment
as the caller.

F.I.2 Pragm LT-SEGMENTLSIZE

This pragma sets the size of a library task stack segment.
The pragma has the format:

pragma LTSEGMETSIZE (T. N);

where T denotes either a task object or task type and N designates the size of the library task

193

DACS-8Ox86 User's Guide
Implemenmaion-Dependent Chaacerisics

stack segment in words.

The library task's stack segment defaults to the size of the library task stack. The size of the
library task stack is normally specified via the representation clause (note that T must be a task
type)

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many tasks can be created which are
nested within the library task. All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus, pragma LT=SEGMbENT-SIZE
must be specified to reserve space within the library task stack segment so that nested tasks'
stacks may be allocated (see section 7.1).

The following restrictions are places on the use of LTSEGMENT-SE2E:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or type name declaration.

3) The library task stack segment size (N) must be greater than or equal to the library task
stack size.

F.I.3 Pragma EXTERNAL-NAME

F.I.3.1 Function

The pragma EXTERNAL-NAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.I.3.2 Format

The format of the pragma is:

pragma EXTERNALNAME(<ada_entity>.e<xtemal name>)

where <ada-entity> should be the name of:

* a permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate from package specifications and bodies only.

* a constant object, i.e. an object placed in the constant pool of the compilation unit . please
note that scalar constants ar embedded in the code, and composite constants ame not always
placed in the constant pool, because the constant is not considered constant by the compiler,

194

DACS-8Ox86 User's Guide
. lzeplemeandon- enm Characeristics

a subproram name, i.e. a name of a subprogram defined in this compilation unit - please
noice tUM sepwe subprogram specifications cannot be used. the code for the subprogram
must be present in the compilation unit code, and where the <extemnal name> is a string
specifying the external name associated the <ada-entity>. The <external names> should be
unique. Specifying identical spellings for different <adaenmiies> will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. Exxxxx..yyyyy, P-xxxxx.
C-xxxxx and other internal idendfications. The target debug type information associated with
such external names is the null type.

F.1.3.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated.
The entity being made external ("public") must be defined in the compilation unit itself. Attempts
to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.I.3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(1..10);

type 3 is
record

len : integer;
val : s3ring1O;

end record;

global s : 3;
cons3ts : constant stringlO :- "1234567890";

pragma EXTERNAL NAME(globals, "GLOBALS OBJECT");
pragma EXTERNAL NAME(const s, "CONST_") ;

procedure handle(...) is

end handle;

pragma EXTERNAL-NAME (handle, "HANDLE PROC");

end example;

The objects GLOBALS and CONSTS will have associated the names "GLOBALSOBJECr"
and "CONSTS". The procedure HANDLE is now also known as "HANDLE_PROC". It is

195

DACS-8046 User's Guide
"" Impl menaion-Dependem Charnuterstics

* " allowable to assign more than one external name to an Ada entity.

F.13.3 Object Layouts

Scalar objects are laid out as described in Chapter 9. For arrays the object is described by the
address of the first element; the array constraint(s) are NOT passed, and therefore it is
recommended only to use arrays with known constraints. Non- discriminated records take a
consecutive number of bytes. whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.13.6 Parameter Passing

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 9.

Scalar objects am always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself. but by the caller.

Composite objects are passed by reference. Records are passed via the address of the fim byte
of the record. Constrained arrays are passed via the address of the first byte (plus a bitoffset when
a packed array). Unconstrained arrays are passed as constrained arrays plus a pointer to the
constraints for each index in the army. These constraints consist of lower and upper bounds, plus
the size in words or bits of each element depending if the value is positive or negative
respectively. The user should study an appropriate disassembler listing to thoroughly understand
the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only: composite results leave an address in some registers and the rest, if
any, am placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

F.I.4 Pragua INTERRUPT-HANDLER

This pragma will cause the compiler to generate fast interrupt handler entries instead of the normal
task calls for the entries in the task in which it is specified. It has the format:

pragma INTERRUPT-HANDLER;

The pragma must appear as the fim thing in the specification of the task object. The task must
be specified in a package and not a procedure. See Section F.6.2.3 for more details and restrictions
on specifying address clauses for task entries.

196

DACS-80x86 User's Guide
lmplemenation-Dependem Characterisucs

F.1I Pragma MONITOR-TASK

F.A.1A Function

The pragma MONITOR_TASK is used to specify that a task with a cenain structure can be
handled in a special way by the Run-Time System, enabling a very efficient context switch
operation.

F.15.2 Format

The formal of the pragma is

pragma MONITOR-TASK;

The pragma must be given in a task specification before any entry declaraions.

F.1.5.3 Restrictions

The following restrictions apply on tasks containing a pragma MONITORTASK:

"• Only single anonymous tasks can be "monitor tasks".

"* Entries in "monitor tasks" must be single entries (i.e. not family enties).

"* The task and entry attributes are not allowed for "monitor tasks" and "monitor task" entries.

"* The <declarative part> shou7ld only contain declaration of objects: no types or nested sturctures
must be used.

"* The structure of the task body must be one of the following:
I.

task body NOW.TAS Is
<declarative part>

begin
<statement list>
loop

select
Accept ENTRY l<parameter list> (do
end);

or
accept ENTRY 2<parametec list> (do

<statement-list>
endl;

or
terminate

end select;
end loop;

end;

where each entry declared in the specification must be accepted unconditionally exactly once.

197

DACS-SOx6 User's Guide
"Implemtemtaon-Dependem Characteristics

2.
tasak body MaNTJUK is

<decla:ative part>
begin

<statelsent •list>

loop
accept MON lrnTypar:a..t:r 1ist> do

<st~atomemnt ±lSt>
end];

end loop;
•nd;

where the task only has one entry.

In both cases the declarative panrs, the stetemen list and the parameter lists may be empty.
The statement list can be arbitrarily complex, but no nested select or accept statements awe
alWowed.

No exception handler in the monitor task body can be given.

The user must guarantee that no exceptions ame propagated out of the accepts.

F.I.SA Example

The foilowuig tasks can be defined

task LSSTEML13 Is
pragma NONZT0 .TASX;
entry 1NSflT(.D4:ZLZ:?TYPZ);
entry 3fIOV•Z(ELt: out ZLbMITYPE):
entry zSjUV•ST(L,4:L• _ TTYI?;

R.SOLT:out9 OOLAU));
end LZST I.AISOLZP

task body LZST_1MLl is
"*define list,

begin
Initialize list*

select
accept rNSERT (ZLZM:ZU DTYPE) do

"insert In list*
end INSERT;

or
accept PZ4OVE(ZELD:*Ut V.09 _TYPE)do

"find In list and COMve from list*
end P09OW

or
accept ISPRESENT (VLM : ELMTTPE

RCS: out BWOLEAM)do"scafn list"
end IS PRES. ;

or
terminate.

end select
end MHO TASX;

The task can be used

task type LZST.SER is

end LIST OSER;

task body LIST.PSUR Is

198

DACS-80x86 User's Guide
"Implementaion-Dependent Characteristics

begin
select

LIST EAMOLER. INSMRT (FIRST._ELDI);
else

raise ZISNRT_ ZMR;
end select;
loop

LIST EANOL.R. INSERT (NZXT9LZl);
and loop;

end LIST-USER;

F.1.6 Pragmn TASKSTORAGESIZE (T, N)

This pragma may be used as an alternative to the awibute 'TASK-STORAGESIZE to designate
the storage size (N) of a particular task object (T) (sv - section 7.1).

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real Address Mode and
DACS-80286PM systems are identical except that type Name and constant SystemName vary:

Comoiler Svstem System Name

DACS-8086 iAPX86
DACS-80186 iAPX186
DACS-80286 Real Mode iAPX286
DACS-80286 Protected Mode iAPX286_.PM

Below is package system for DACS-8086.

package System is

type Word is new Integer;
type OWord is new Long integer;

type OnsignedWord Is range 0..63535;
fo: OnsignedWord' SIZE use 16;

type byte is range 0..255;
for byteSIZZE use 6;

subtype Segment.d is OnsignedNord;

type Address is
record

offset Unsi gn*~ord;
segment Segment.d;

end record;

subtype Priority is Integer range 0..31;

199

. DACS-8Ox86 User's Guide
implemenmaion-Depaident Charcteristics

type Name is (LAXIX6):

SYSI IkuAW : constant Noam : iAPX86;
STOAGZ OZT Constant : 16;
IE404RY SiSS constant :. 104S56;
MINUZ Ila constant : -2 147483 647-1;
MAX ZN= constant : 2 47 483447;
KAX, DIGITS constant : 15;
MAX MANTISSA constant 31;
rNi D!LTA c onstant : 201.0#E-31;
TIO2C constant : 0.000000125;

type Znterface.language is
(ASHIE, P1U06, C86. C86_REVZASzL
ASIACF, iiACi, C.A:T, c.CNZVERSzAa.
AS, WOACT, iLh NOAC., CJRO:Wr, CWJEvrRSZ _OhcTr);

type Exceptionld Is record
unit number Onsignedword;
unique numler :nsigneadord;

and record;

type TaskValue is new integer;
type AecTaskValue is access TaskValue;
type SemaphoreValue Is new Integer;

typo Semaphore is record
counter Integer;
first TaskValue:
last TaskValue;
Smexit SemaphoreValue;

-- only used In 3rS.
end record;

ZnitSeomahore : constant Semaphore :- Semaphore' (1.0.0,0);

end System;

The package SYSTEM specification for DACS-80386PM package system is:

package System is

"y•pe Word is now Short Integer;
type OWord is now Intreger;
type guard is new Longnteger;

"type Onsigneduord is range 0..65535;
for Onsigned~ord' SIZZ use 16;
type OnsignedlD4ord is range 0.-.16OreF MTFFrf ;
for OnslgnedDtord' SIZE use 32;
type byte is range 0..255;
for Byte'SZZZ use 8;

subtype Segment.d is Ons2gnedWord;

type Address is
record

offset OnsignedWWord;
segment Segmentid;

end record;

for Address use
record

offset at 0 range 0..31;
segment at 2 range 0..15;

end record;

subtype Priority Is Integer range 0..31;

200

DACS-80x86 User's Guide
Implementation-Dependem Characteriscs

type Name is (LA1PX34S N);

SYSTED NAME constant Same :, 1.AX306 P_;
STO*ZU• N VT :onstant : 16;
i4ORY SZzU constant 16# 0000 000000;
mIy lie constant :- -1648000 0000 0000 00000;
H kZN? constant ; -emT F ;
lOX OZGITS :€Constant :- 15;
MAX MARTISSA constant : 31;

MMNI DELTA constant :- 2#1.0$Z-31;
TIMC constant :- 0.0000000425;

type Interface language is

(ASM.6, PL86, C26. CUE G •VERSZ.
ASPitACF. P1U4ACF, C _ACT CRERSEACT,
ASMOACY, PI•_WOACT, CNOACT, C.RZViZNSNOAC.);

type Except•onld is record
unit number OnsignedDcord;
unlice numbeor OnsignedDword;

end record;

type TaskValue is new Integer;
type AccTaskva.lue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter Integer;
first, last TaskValue;
SQ"*ixt SemaphoreValue;

-- only used in EDS.
end record;

InitSemaphore : constant Semaphore :-Semaphore' (1,0,0,0);

end System;

F.4 Representation Clauses

The DACS-SOx86 T1 fully supports the 'SIZE representation for derived types. The representation
clauses that are accepted for non-derived types are described in the following subsections.

F.4.1 Length Clause

Some remarks on implementation dependent behavior of length clauses are necessary:

"* When using the SIZE attribute for discrete types, the maximum value that can be specified is
16 bits. For DACS-80386PM/80486PM the maximum is 32 bits.

" SUE is only oheyed for discrete types when the type is a part of a composite object. e.g.
arrays or records, for example:

type byte is range 0..255;
for byte'size use 8;

sixteen bits allocated : byte; -- one word allocated

201

"DACS-80x86 User's Guide
Implemenmation-Dependent Characteristics

eight bit.perele=nt : array(O..7) of byte; -- four words allocated
type rec is

record
cl,c2 : byte; -- eight bits per component
end record:

"* Using the STORAGE-SIZE attribute for a collection will set an upper limit on the total size
of objects allocated in this coUecion. If frther allocation is attempted, the exception
STORAGE-ERROR is raised.

"• When STORAGESIZE is specified in a length clause for a task type. the process stack area
will be of the specified size. The process stack area will be allocated inside the "standard" stack
segment. Note that STORAGESIZE may not be specified for a task object

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of -32767..+32766 (or
-16#7FFF..16#7FFE).

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following resrictions are imposed:

"* if the component is a record or an unpacked array, it must star on a storage unit boundary
(16 bits)

"• a record occupies an integral number of storage units (words) (even though a record may have
fields that only define an odd number of bytes)

"* a record may take up a maximum of 32K bits

"* a component must be specified with its proper size (in bits), regardless of whether the
component is an array or not (Please note that record and unpacked army components take up
a number of bits divisible by 16 (-word size))

"* if a non-array coriponent has a size which equals or exceeds one storage unit (16 bits) the

component must start on a storage unit boundary. i.e. the component must be specified as:

component at N range 0.16 0 M - 1;

where N specifies the relative storage unit number (0.1,....) from the beginning of the record, and
M the required number of storage units (1.2,...)

"• the elements in an array component should always be wholly contained in one storage unit

"* if a component has a size which is less than one storage unit. it must be wholly contained
within a single storage unit:

202

DACS-804x6 User's Guide
""mplememation-Dependent Characteristics

component at N range X .. Y;

where N is as in previous paragraph. and 0 <- X <= Y <= 15. Note that for this restriction
a component is not required to start in an integral number of storage units from the beginning
of the record.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit boundary. Holes created because
of component clauses are not otherwise utilized by the compiler.

Pragma pack on a record type will atempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and
larger components will follow in the order specified in the record. The packing begins at the first
storage unit after the components with epresentation clauses.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristcs:

"* If the declaration of the record type is done at the outermost level in a library package. any
alignment is accepted.

"* If the record declaration is done at a given static level higher than the outermost library level.
i.e., the permanent area), only word alignments are accepted.

"• Any record object declared at the outermost level in a library package will be aligned according
to the alignment clause specified for the type. Record objects declared elsewhere can only be
aligned on a word boundary. If the record type is associated with a different alignment, an
error message will be issued.

"* If a record type with an associated alignment clause is used in a composite type, the alignment
is required to be one word; an error message is issued if this is not the case.

F.5 Implementation-Dependent Names for Implementation Dependent Components

None defined by the compiler.

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have
their address specified by the user.

203

DACS-•x86 User's Guide
Imp mentation-Dependent OCracteritics

FA.. Objects

Address clauses are supported for scalar and composite objects whose size can be determined at
compile time. The address clause may denote a dynamic value.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to a hardware intemrpt through
an address clause:

1) Direct transfer of control to a task accept statement when an interriup occurs. This form
requires the use of pragma Th1TERRUPTJHANDLER.

2) Mapping of an interrupt onto a normal conditional entry call. This form allows the interrupt
entry to be called from other tasks (without special actions), as well as being called when
an interrupt occurs.

F.6.2.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an interrupt occurs requires the
implementation dependent pragma INTERRUPT-HANDLER to tell the compiler that ths osk is
an interrupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

"* Provide the fastest possible t-ponse time to an interrupt.

"• Allow entry calls to other tasks during interrupt servicing.

"* Allow procedure and function calls during interrupt servicing.

"* Does not require its own stack to be allocated.

"• Can be coded in packages with other declarations so that desired visiblity to appropriate parts
of the program can be achieved.

"• May have multiple accept statements in a single fast interrupt task, each mapped to a different
interrupt. If more than one interrupt is to be serviced by a single fast interrupt task, the accept
statements should simply be coded consecutively. See example 2 how this is done. Note that
no code outside the accept statements will ever be executed.

204

DACS-8Ox86 User's Guide
"-lmp o-Depeden Characteritics

F.6.23 Limtations

By using the fast interrupt feature, the user is agreeing to place certain restrictions on the task in
order to speed up the software response to the interrupt Consequently, use of this method to
capture interrupts is much faster than the normal method.

The following limitations are placed on a fast interrupt task:

" It must be a task object. not a task type.

"* The pragma must appear first in the specification of the task object.

"* All entries of the task object must be single entries (no families) with no parameters.

" The entries must not be called from any task.

"* The body of the task must not contain any statements outside the accept statement(s). A loop
statement may be used to enclose the accept(s), but this is meaningless because no code outside
the accept statements will be executed.

"* The task may make one entry call to another task for every handled interrupt, but the call must
be single and parameterless and must be made to a normal tasks, not another fast interrupt
task.

"* The task may only reference global variables; no data local to the task may be defined.

"* The task must be declared in a library package. i.e., at the outermost level of some package.

"* Explicit saving of NPX state must be performed by the user within the accept statement if such
state saving is required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal as long as the entries are single (no
indexes) and parameterless.

If such an entry call is made and there is a possibility of the normal task not being ready to
accept the call. the entry call can be queued to the normal task's entry queue. This can be forced
by using the normal Ada conditional entry call construct shown below:

accept E do
select

T.E,
else

null:
end select;

endE,

Normally, this code sequence means make the call and if the task is not waiting to accept it
immediately, cancel the call and continue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the queuing of the entry call.

205

DACS-80x86 User's Guide
SDependent haracteruitcs

If an unconditional entry call is made and fth called task is not waiting at the corresponding
accept statement. then the interrupt task will wait at the entry call. Alternatively, if a timed entry
call is made and the called task does not accept the call before the delay expires. then the call
will be dropped. The conditional entry call is the preferred method of making task enu-y calls
from fast interrupt handlers because it allows the interrupt service routine to complete straight
through and it guarantees queueing of dhe entry call if the called task is not waiting.

When using this method, make sure that de interrupt is included in the 4nerrupt entrytable
specified at link time. See Section 72.15 for more details.

F.6.2J Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada tasks. Rather, they can be viewed
as procedures that consist of code simply waiting to be executed when an interrupt occurs. They
do not have a state, priority, or a task control block associated with them, and are not scheduled
to *run" by the rnm-time system.

Since a fast interrupt handler is not really a task, to code it in a loop of somekind is meaningless
because the task will never loop; it will simply execute the body of the accept statement whenever
the interrupt occurs. However, a loop construct could make the source code more easily understood
and has no side effects except for the generation of the executable code to implement to loop
COnstrutCL

F.6.2± Flow of Control

When an interrupt occurs, control of the CPU is transferred directly to the accept statement of the
task. This means that the appropriate slot in the interrupt vector table is modified to contain the
address of the corresponding fast interrupt accept statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers and sets (E)BP to look like a frame where the interrupt return
address works as return address.

at the very end:
code that restores registers followed by an IRET instruction.

Note that if the interrupt handler makes an entry call to another task, the interrupt handler is
completed through the IRET before the rendezvous is actually completed. After the rendezvous
completes, normal Ada task priority rules will be obeyed, and a task context switch may occur.

Normally. the interrupting device must be reenabled by receiving End-Of-Interrupt messages. These
can be sent from machine code insertion statements as demonstrated in Example 7.

206

DACS-80x86 User's Guide
..lmplemaraion-Dependem Chanctenisucs

FA2.7 Savin4 NPX State

If the interrupt handler will perform floating point calculations and the state of the NPX must be
saved because other tasks also use the numeric coprocessor, calls to the appropriate save/restore
routines must be made in the statement list of the accept statement. These routines are located
in package RTSEntryPoints and are called RTS_SwoeNPX_State and RTSRestoreNPXState.
See example 6 for more information.

F.6.2.8 Storage Used

This section details the storage nequirements of fast interrupt handlers.

F.6.29 Stack Space

A fast interrupt handler executes off the stack of the task executng at the time of the interrupt.
Since a fast interrupt handler is not a task it does not have its own stack.

Since no local data or parameters ame permitted. use of stack space is limited to procedure and
funcon calls from within the interrupt handler.

F.6.2.10 Run-Time System Data

No task cont: l block (TCB) is created for a fast interrupt handler.

If the fast interrupt handler makes a task entry call, an entry in the _CDOTRUPTVECTOR
must be made to allocate storage for the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each entry is only 10 words for 80386/80486
protected mode compilers and 5 words for all other compiler systems. This table is created by
the linker and is constrained by the user through the linker option -interrupt entry table. For
more information, see Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section F.6.2.7). it is done so in the NPX save
area of the TCB of the task executing at the time of the interrupt. This is appropriate because it
is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that must be followed to build an application using one or
more fast interrupt handlers.

207

DACS-80x96 User's Guide
lmplementation-Dependem Charncteristics

F.63.1 Source Code

The prmna INTRRUFT_HANDLER which indicates that the interrupt handler is the fast form
of interrupt handling and not the normal type, must be placed in the task specificauon as the first
statement.

When specifying an address clause for a fast interrupt handler. the offset should be the interrupt
number, not the offset of the interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by the compiler for interrupt addresses.
The compiler will place the interrupt vector into the INTERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be in segment 0 at execution time.
For protected mode programs, the user specifies the interrupt vector location at build time.

Calls to RTS_StoreNPXState and RTS_Resore.NPXState must be included if the state of the
numeric coprocessor must be saved when the fast interrupt occrus. These routines are located in
package RTS_.EnuyPoims in the mot library. See example 6 for more information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.63.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have to be accounted for when using the
-tasks option at link time. In fact. if there are no normal tasks in the application, the program
can be linked without -tasks.

This also means that the linker options -It stack size. -lt_segmentsize, -mp_segment size. and
-task storagesize do not apply to fast internupt iasks. except to note that a fast interrupt task will
execute off the stack of the task running at the time of the interrupt.

If an entry call is made by a fast interrupt handler the interrupt number must be included in the
-interrupt entrytable option at link time. This option builds a table in the run-time system data
segment to handle entry calls of interrupt handlers. The table is indexed by the interrupt number,
which is bounded by the low and high interrupt numbers specified at link time.

F.6.3.4 Locating(Building the Program

For real-address mode programs, no special actions need be performed at link time: the compiler
creates the appropriate entry in the RTERRUPTVECTORTABLE segment. This segment must be
at segment 0 before the first interrupt can occur.

For protected mode programs no special actions need be performed. The Ada Link automatically
recognizes Ada interrupt handlers and adds them to the IDT.

208

DACS-80x86 User's Guide
•eazon-Dependem Characteristics

FA.4 Examples

These examples illustrae how to write fast interrupt tasks and then how to build the application
using the fast interrupt tasks.

F.6.4.1 Example I

This example shows how to code a fast interrupt handler that does not make any task entry calls.
but simply performs some interrupt handling code in the accept body.

Ada source:

with System;
package P is

<potentially other declarations>

task Fast_lnterupt_Handler is
pragma LNTE•rUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 10):

end;

<potentially other declarations>

end P-,

package body P is

<potentially other declarations>

task body Fastjnterrupt_.Handler is
begin

accept E do
<handle interrupt>

end E;
end"

<potentially other declarations>

end P;

with P,
procedure Example-l is
begin

<main program>
end Example-l:

Compilation and Linking:

209

DACS-80x86 User's Guide
. lmp sonDependent Charcteristics

S ada Example_1
S ada.link Example 1 ! Note: no other tasks in the system in this example.

F.6.4.2 Example 2

This example shows how to wri"m a fast interrupt handler that services mome than one interrupt.

Ada source:

with System;
package P is

task Fast_Interrpt._Handler is
pragma fNliTERRUPTHANDLER;

entry El;
entry E2;
entry E3l

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0, offset => 11).

end;

end P;

package body P is

task body FastImneraptHandler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt 11>

end E3l
end;

end P-,

Compilation and Linking:

210

DACS-80x86 User's Guide
• .plmm n D-t Characteristics

S ada Exanmple_2
$ ada..ink -tasks - Example;2 * assumes application also has normal tasks (not shown)

F.6.43 Example 3

This example shows how to access global data and make a procedure call from within a fast
interrupt handler.

Ada source:

with System;
package P is

A : Integer.

task Fast-nteraptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 160127*);

end;

endP;

package body P is

B : Integer

procedure P (X : in out Integer) is
begin

X := X+ 1;
end:

task body FastIrernzptHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Unking.

$ ada Example 3
$ ada.Jink Example_3

211

DACS-80x86 User's Guide
ImplmentzionDependent Characteristics

F.6.4.4 Example 4

This example shows how to make a task enuty call and force it to be queued if the called task
is not waiting at the accept at the time of the call.

Note that the application is linked with -tasks=2, where the tasks are T and the main program.
Since the fast interrupt handler is making an entry call to T, the techniques used guarantee that
it will be queued. if necessary. This is accomplished by using the conditional call construct in
the accept body of the fast interrupt handler and by including the interrupt in the -
inteTupt entryable a link time.

Ada source:

with System;
package P is

task FastinterruptHandler is
pragma IlTERRUV'_THANDLER;
entry E.
for E use at (segment => 0. offset => 8);

end;

task T is
entry E;

end;

end P;

package body P is

task body FasInterruptHandler is
begin

accept E do
select

T.E;
else

null;
end select:

end E;
end-
task body T is
begin

loop
select

accept EF
or

delay 3.0;
end select;

end loop;
end;

end P2

212

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

Compilation and Linking:

S ada Example_4
$ ada.Jink -tasks 2 -interrupt entrytable 8,8 Example_4

F.6.4.. Example 5

This dxample shows how to build an application for 80386/80486 protected mode programs using
fast interrupt handlers.

Ada source:

with System;
package P is

task FasLInteript_Handler is
p•agma 11TERRUPT_-HANDLER;
enuty E;
for E use at (segment => 0, offset => 17);

end:

end P.

package body P is

task body Fastjnteript.Handler is
begin

accept E do
nun.;

end E;
end;

end PR

Compilation and Linking:

$ ada Examples
$ adaJink -tasks - Example s

213

DACS-80x86 User's Guide
Implemenmaion-Dependent Characteristics

F.6.4.6 Example 6

This example shows how to save and restore the state of the numeric coprocessor from within a
fast interrupt handler. This would be required if other tasks am• using the coprocessor to perform
floating point calculations and the fast interrupt handler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block of the task executing at the time

of the interrupL

Ada source:

with System;
package P is

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0. offset => 25);

end-

end P1.

with RTSEnuyPoints;
package body P is

task body Fast_jnterrupLHandler is
begin

accept E do
RTSEntryPoints.StoreNPXState;

<user code>

RTSEntryPoints.Restore.NPXState;
end E;

end;

end P;

Compilation and Linking:

S ada Example_6
S ada-Jink -npx -tasks - Example_6

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the last step in servicing the
interrupt.

Ada source:

214

DACS-80x86 User's Guide
Implemazion-Dependent Characteristics

with System:
package P is

task FastjnterruptHandler is
pragma INTERRUPT.HANDLER;
entry E,
for E use at (segment -> 0. offset => 5);

end;

endI•,

with Machine-Code; use Machine-Code;
package body P is

procedure SendEO[is
begin

machine instruction'
(registerimmediate, m=MOV, AL. 16#66#);

ma:hine7instruction'
(immediate¢egister. meOUT, 16#"e0. AL);

end;
pragma inline (SendEOI);

task body FastInterrupt-Handler is
begin

accept E do
<user code>
Sen&dEOI;

end E;
end:

end P•

Compilation and Linking:

S ada Example.7
$ ada.link -tasks - Example_7

F.6.S Normal Interrupt Tasks

"Normal" interrupt tasks am• the standard method of servicing interrupts. In this case the interrupt
causes a conditional entry call to be made to a normal task.

F.6,1 Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

215

DACS-80x86 User's GuideI mena -Dependent Characteristics

2) May be caled by other tasks with no restctions.

3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a normal task declaration is allowed.

F.6.5. Limitations

Mapping of an interrupt onto a normal conditional entry call puts the following constraints on the
involved entries and tasks:

1) The affected entries must be defined in a task object only, not a task type.

2) The entries must be single and parameterless.

F.6A.3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given a priority and runs as any other
task, obeying the normal priority rules and any time-slice as configured by the user.

F.6..4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an interrupt service routine
generated by the specification of the interrupt task. This routine preserves the registers and calls
the run-time system. where the appropriate interrupt task and entry am determined from the
information in the _CD[NTERRUPTVECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that corresponds to the interrupt, then the
interrupt task is scheduled for execution upon return from the interrupt service routine and the call
to the run-time system is completed. The interrupt service routine will execute an MRET, which
reenables interrupts, and execution will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is not in the body of the accept statement that corresponds to the interrupt, then
the entry call is automatically queued to the task, and the call to the run-time system is
completed.

If the interrupt task is not waiting at the accept statement that corresponds to the interrupt, and
the interrupt task is executing in the body of the accept statement that corresponds to the interrupt,
then the interrupt service routine will NOT complete until the interrupt task has exited the body
of the accept statement. During this peiod, the interrupt will not be serviced, and execution in
the accept body will continue with interrupts disabled. Users am cautioned that if from within
the body of the accept statement corresponding to an interrupt. an unconditional entry call is made.
a delay statement is executed, or some other non-deterministic action is invoked, the result will
be erratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the interrupting device.

216

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.63.5 Saving NPX State

Because normal interrupt tasks are standard tasks, the state of the NPX numeric coprocessor is
saved automatically by the run-time system when the task executes. Therefore, no special actions
are necessary by the user to save the state.

F.6.5.6 Storage Used

This section describes the storage requirements of standard interrupt tasks.

F.6.S.7 Stack Space

A normal interrupt task is allocated its own stack and executes off that stack while servicing an
interrupt. See the appropriate sections of this User's Guide on how to set task stack sizes.

F.6.S.8 Run-Time System Data

A task control block is allocated for each normal interrupt task via the -tasks option at link time.

During task elaboration, an entry is made in the run-time system _CDJNTERRUVr_VECTOR
table to "define" the standard interrupt. This mechanism is used by the run-time system to make
the conditional entry call when the interrupt occurs. This means that the user is responsible to
include all interrupts serviced by interrupt tasks in the -interruptentry table option at link time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses standard Ada tasks to service
interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives are required to specify that a task is a normal interrupt
task. If it contains interrupt entries, then it is a normal interrupt task by defaulIL

When specifying an address clause for a no.-'na interrupt handler, the offset should be the
interrupt number, not the offset of the interrupt in the interrupt vector. The segmaent is not
applicable (although some value must be specified) because it is int used by the compiler for
interrupt addresses. The compiler will place the interrupt vector into the
INTERRUTM CTORTABLE segment. For real address mode programs, the interrupt vector
must always be in segment 0 at execution rime. This placement can be accomplished by specifying

217

DACS-80x86 User's Guide
.Implemention-Dependent Charactertiscs

the address to locate the DnTERRU7rVECTORTABLE segment with the 1oc86 command, or at
nn time, by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTABLE segment to segment 0 and the compiler will put it themr
automatically. For protected mode programs, the user specifies the interrupt vector locaton at
build time.

F.6.6.1 Compiling the Program

No special compilation options are required.

F.6.6.3 Linking the Program

The interrupt task must be included in the -tasks option. The link options -It stack size, --
Itsegment size, -mpsegment size. and -task storagesize apply to normal interrupt tasks and
must be set to appropriate values for your applcation.

Every interrupt task must be accounted for in the -interrupt entry table option. This option
causes a table to be built in the run-time system data segment to handle interrupt entries. In the
case of standard interrupt tasks, this table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and then how to build the application
using them.

F.6.7.1 Example I

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task NormalInternupt-Handler is
enuy E;
for E use at (segment => 0, offset => 10);

end;

end P.

package body P is

task body NormalInterruptHandler is

218

DACS-S086 User's Guide
Implmentation-Dependem Charcteristics

begin
accept E do

<handle interrupt>
end E.

end;

end P,

with P,
procedure Example_ is
begin

-<main program>
end Example-l;

,Compilation and Linking:

S ada Examplel
$ adafink -tasks 2 -interrupt entry table 10,10 Example-1

FA.7.2 Example 2

This example shows how to write a normal imerupt handler that services more than one interrupt
and has other standard task entries.

Ada source:

with System;
package P is

task NormalTask is

entry El;
entry E2; - standard entry
entry E3;

for El use at (segment => 0, offset => 7);
for E3 use at (segment => 0, offset => 9);

end;

endP

package body p is

task body NormalTask is
begin

loop
select

accept El do
<service inernh,. 7>

219

DACS-80x86 User's Guide
ImplmemdonDependent Characteuisuics

end El;
or

accetx E2 do
<stndad rendezvous>

end E2;
or

accept E3 do
<service interrupt 9>

end E3;
end selem-

end Iop;
e Nord a JTask;

end P-

Compilation and Linking:

$ ada Example.2
$ ada-link -tasks -interrupt entrytable 7,9 Example_2

F.6.7.3 Example 3

This example shows how to build an application for 80386 protected mode programs using normal
interrnpt handlers.

Ada source:

with System;
package P is

task Normal_lnterrupt_Handler is
enryE
for E use at (segment => 0. offset => 20);

end;

end P-

package body P is

task body Normal_IntmuptHandler is
begin

accept E do
null;

endE.
end;

end P.

220

DACS-80X86 User's Guide
implementation-Dependent Chacteristcs

Compilation and Linking:

S ada Example3
S ada-link -tasks .interrupt entryjable 20,20 Example_3

F.6.7.4 Example 4

This example shows how an End-Of-Interrupt message may be sent to the interrupting device.

Ada source:

with System;
package P is

task NormalInterrupt.Handler is
entry E;
for E use at (segment -> 0, offset -> 7);

end;

end P;

with Machine-Code; use Machine Code;
package body P is

procedure Send EOI is
begin

machine inst ruction'
(register immediate, mMOV, AL, 16#66#);

machine instruction'
(immediateregister, m OUT, 16#OeO#, AL);

end;
pragma inline (Send EOI);

task body NormaljnterruptjHandler is
tegin

accept E do
<user code>
Send EOI;

end E;
end;

end P;

Compilation and Linking:

S ada Examptle 4
$ adLlin tasks -interrupt entry table 7,7 Example.4

221

DACS-80x86 User's Guide
"Implementation-Dependent Charcterisucs

FAJ Interrupt Queuing

DDC-I provides a useful feature that allows task entry calls made by interrupt handlers (fast and
normal variant) to be queued if the called task is not waiting to accept the call. enabling the
interrupt handler to complete to the IRET. What may not be clear is that the same interrupt may
be queued only once at any given time in DDC-I's implementation. We have made this choice
for two reasons:

a) Queuing does not come for freem and queuing an interrupt more than once is considerably
more expensive than queuing just one. DDC-I feels that most customers prefer their
interrupt handlers to be as fast as possible and that we have chosen an implementation that
balances performance with funiconality.

b) In most applications, if the sevicing of an interrupt is not performed in a relatively short
period of time, there is an unacceptable and potentially dangerous situation. Queuing the
same interrupt more than once represents this situation.

Note that this note refers to queuing of the same interrupt more than once at the same time.
Different interrupts may be queued at the same time as well as the same interrupt may be queued
in a sequential manner as long as there is never a situation where the queuing overlaps in time.

If it is acceptable for your application to queue the same interrupt more than once, it is a
relatively simple procedure to implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler. The agent task accepts calls from the
interrupt task and makes the call on behalf of the interrupt handler to the originally called task.
By careful design, the agent task can be made to accept all calls from the interrupt task when they
are made, but at the very least, must guarantee that at most one will be queued at a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an interrupt is completely handled
before the same interrupt recurs. There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal task. then place the code that
reenables the interrupt at the end of the accept body of the called task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually completed between the fast
interrupt handler and the called task even if the call was queued. Note that the interrupt task
executes all the way through the IRET before the rendezvous is completed if the entry call was
queued.

Normally, end-of-interrupt code using LowLeveUO will be present in the accept body of the fast
interrupt handler. This implies that the end-of-interrupt code will be executed before the
rendezvous is completed, possibly allowing the interrupt to come in again before the application
is ready to handle it.

If the fast interrupt handler does not make an entry call to another task, then placing the

2n

DACS-80x86 User's Guide
.pem eaon-Depende• n Chaactestics

end-of-in. mpt code in the accept body of the fast interrupt task will guarantee that the interrupt
is completely serviced before another inrteupt happens.

F.6.9.2 Normal Interrupt Handier

Place the code that meenables the interrupt at the end of the accept body of the normal interrupt
task. When this is done., the interrupt will not be reenabled before the rendezvous is actually
completed between the normal interrupt handler and the called task even if the call was queued.
Even though the imerrupt "completes" in the sense that the IRET is executed, the interrupt is not
yet reenabled because the rendezvous with the normal task's interrupt entry has not been made.

If these techniques am used for either variant of interrupt handlers, caution must be taken that
other tasks do not call the task entry which reenables interrupts if this can cause adverse side
effects.

FA7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However. if scalar type
has different sizes (packed and unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional 1/0 system, but in order to support
testing and validation, DDC-I has developed a small terminal oriented [V system. This I/O system
consists essentially of TEXTIO adapted with respect to handling only a terminal and not file I/O
(file I/O will cause a USE error to be raised) and a low level package called
TERMINALDRIVER. A BASICJO package has been provided for convenience purposes,
forming an interface between TEXTJO and TERMINALDRIVER as illusutated in the following
figure.

TZX o 10
BAS3C 10

TZmIrMAL ODRZVl
(9/W interface)

The TERMINALDRIVER package is the only package that is target dependent. i.e., it is the only

223

DACS-80x36 User's Guide
plementation-Dependent Characrnstics

package that need be changed when changing communications controllers. The actual body of the
TERMINALDRIVER is written in assembly language and is pan of the UCC modules DI[PUT
and DIIGET. The user can also call the terminal driver routines directly, i.e. from an assembly
language routine. TEXTJO and BASICJO are written completely in Ada and need not be
changed.

BASIC-1O provides a mapping between TEXTJO control characters and ASCII as follows:

TEXTIO ASCII Character

LINE-T.ERMINATOR ASCII.CR
PAGETERMINATOR ASCIIFF
FILE-TERMINATOR ASCII.SUB (CTRLPZ)
NEW-LINE ASCII.LF

The services provided by the terminal driver are:

1) Reading a character from the communications port. GetCharacter.

2) Writing a character to the communications port. PutChancter.

F.8.I Package TEXT..O

The specification of package TEXT_1O:

pragma page;
with WALSC 10;

with ZO EXCCZPT1NS;

package ?Tt 1O is

type FZLETYPE s limite•d pr•vate;

type FILE NODE is (I• FLZ, Oo'rUTFI);

type COU Is ranqe 0 .. INT£GF,'LAST;
subtype POS3ITVE COUNT is COUNT range I .. COOIT' LAST;
UNBOUNDED: constAnt COUNT:- 0; -- line and page length

-- max. size of an integer output field 20.... 0

subtypo FIELD is INTEZGE range 0 .. 35;

subtype NU0tEE BASE is IZIEGER range 2 .. 16;

type T•r&PEST is (LOwEuCAS, UPPERCAS);

pragma PAUe;
-- File Nanagment

procedure CREATE (FILE : in out FILE TYPE;
NOO : in FLE IS0E :O0T FLZE;
NUAM in STRING -
FROM in STRING :

procedure OPfl (FILE : in out FILE TYPE;
"WOOE In FILE-NOOK;
NAM in STTrING;

224

DACS-W86 User's Guide
Imp~menaiosDependem Chanciwnsuics

TOME In STvN :

procedure CLOSE (FILE in out IrLEzTIlE);
procedure DELETE (FILE in out FILE TYPE);
procedure IRZ3ET (FILE In out FILE TYP.;

"NWOE In FILE OrS);
procedure Z3SET (FILE In out FILE TIE);

function NOVE (FILE In FILE TYPE) return FILLE NOE;
function NAM (FILE in FTLE7TYPE) return STRIkG;
function F03 (FILE in FILETYPE) return STRING;

function Is-oPS(iLE in FILE TYPZ return BOOLEAN;

pragma PAG;
-- control of default input and output files

procedure SE? TI)UT (FILE In FILE TYPE);
procedure SET OUTPUT (FILE in FZLE TTPE);

function STMIOAM INPUT return FILE TYPE;
function STJAmOID OUmTPT return FniLETYPE;

function CVUNNT3VNVPT return FILETYPE;
funct•on CURRENT OUTP return FILE TYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SE? LINELENwTE (FILE In FILE TYPE;
TO In COUNT);

procedure SETLINE LENGTE (TO : in COUNT);

procedure SET PAGE LZNGTZ (FILE in FILETYPE;
TO In COUNT);

procedure SET PAGE LENGTZ (TO : In COUNT);

function LINELENGTH (FILE : in FILE TYPE)
return COUNT;

function LINkE-LDGTH return COUNT;

function PAGýELDGT8 (FILE : in FILE TYPE)
return COUNT;

functlon PAGE-LENGTH return COUNT;

pragma PAGE;
-- Column, Line. and Page Control

procedure NEWLINZ (FILE : In FILE TYPE;
SIACING in POSITIVE COUNT , 1);

procedure NEW LINE (SPACING In POSMTVE COUNT : 1);

procedure SXPLNE. (FILE , In FILETYPE;
SPACING in PO5ITIVE COUNT : 1);

prc.cedure SKXPL.NE (SPACING In PSITzIVCOUNT : 1);

function ENO OF LM (FILE in FILE TYPE) return DOOLEANI;
fuction Z _OFLIVNE return DOOLa•I;

procedure WENHYAU (FILE In FILE TYIPE);
procedure NEW.PAGE;

procedure SKXIpPAG (FILE in FILE TYPE);
procedure SKIJAMG;

function pOFPAGE (FILE in FZXIE TyIN) return DOOLEU;
function ENDOS0 PAGE return BOOLEAN;

function D rOFjXLE (FILE In FILE TIP) return DOOLEAI;
function DI OF FILE return BOOLZW.;

225

DACS-8Ox86 User's Guide
Implemeraziora-Deperidern Chnczenszzcs

procedure SE? CCL MFILE In FILE_ TYPE9;
TO In POSITIVE COON?);

procedure SZT CCL (TO In POSITIVE CCCV?);

procedure SETLINE (FILE :in FILE TYPE;
TO in POSITIVE COUNT);

procedure STLINE (TO In POSITIVE COmnT);

function COL (FILL In FILE TYPE)
return POSITIVE COON;

function COL return POSITIVE COON?;

function LIME (rIL in FILE TYPE)
return POSITIVE COON?;

function LINE return IPOSITIVE COON?;

function VIA4 (FILE In FILE TYPE)
return POSITIVECOON?;

function PAGE return POSITIVECOON?;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE in FILE TYPE; ITEM out CHARACTER);
procedure OET (ITEM out CHARACTER);
procedure PUT (FILE in rILZ-TYPE; ITEM in CHARACTER);
procedure PUT (ITEM In CHARACTER);

-- string Input-output

procedure GET (FILE in FILE-TYPE; ITEM out CHARACTER);
procedure GET (ITEM out CHARACTER);
procedure PUT (FILE in FILE TYPE; ITEM I n CHARACTER);
procedure PUT (ITEM In CHARACTER);

procedure GE? LINE (FILE In FILE _TYPE;
ITEM out STRING;
LAST out NATURAL);

procedure GZTLInE (ITEM out STRING;
LAST out HATURAL);

procedure PUT LINE (FILE In FILE TYPE;
ITEM In STRING);

procedure PUT LINE (ITEM in STRING);

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type MUM Is rang* <>;

package INTEGEM IC i2

DEFAULT WIDTH FILD :- NOWWDTH;
DEFAVLT EASE NOMER EASE 10;

procedure GET (FILE in FILETTYPE;
ITDI out NMN.
WIDTH In FIELD 0);

procedure GET (ITEM out NMN;
WIDT in FIELD -0);

procedure PUT (FILE in FILETTYPE;
ITEM In NON.
WIDTH in FIELD :- DEFAULT WNIDTN:
BASE In NUWOER SM :- DEFAULT EASE);

procedure PUT (Irfl in HIM;
WIDTH in FiEL :- DEFAULT WIDT;
BASE in NUMBER EASE :- DEFAULT EAS);

procedure GET (FCK in STRING;
ITEM out MON.

226

DACS-80x86 User's Guide
lmplememaUion-Dependent Characteristics

LAST out PIOSITZ4);

prze:lare PUT (TO out STRING;
ITCH in 36W3;
USE In NONWI z -A.- DEFAULT -S&");

end nrT•ER• 0o;

pragma PAU;

-- Generic Packages for input-Output of Re41 Types

generic
type mm is digits <>;

package FLOAT_0o Is

DEFADLT FORE FIELD 2;
D iAOLT AFT : FIELD NO-'DIGITS - 1;
DEFAULTX FIELD :- 3;

procedure GET (FILE In FILE_TTPE;
ITEM out NON;
vIDim in FIELD :. 0);

procedure GET (7ITM out NOW;
wiDT1 in FIELD :-0);

procedure POT (FILE in FZLETYPE;
ITEM In NM04;
FORE in FIELD , M.FAOLT FORZ;
AFT in FIELD DEFADLT-AFT;
Sin FIELD - DEFAtLT'E2P);

procedure POT (ITEM In NOWt;
FORZ in FIELD - DEFAULT FORE;
AFT in FIELD : DEFAULT AFT

S: In FIELD : DEFA'LT EXP);

procedure CGT (FRCH In STRING;
ITEM out NUN*
LAST out POSITIVE);

procedure POT (TO out STRI•NG;
Tm In M41M4;

AFT in FIELD :- DEFAULTMAF;
XP :In FIELD :DEFALTE);

end FLOAT 10;

pragma PAGE;

generic
type NUN in delta <>;

package FrzVD zo is

D.FAULT_FORZ FIELD : u m34' FORE;
DOrFALTAFT FIELD :" 3M63' iT
DEFAULTr- FIELD : 0;

procedure GET (FILE in FILE-TYPE;
ITEM out 3034;
VIMDT In FIELD 0);

procedure GET (ITEM out 30M4;
MID'l in FIELD : 0);

procedure POT (FILE in FILETYPE;
ITEM In VNM;
FOmE In FIELD : DEFAULT FORE;
AFT in FIELD DIPALT-AlFT;
E• : in FIELD - DZAULT E23);

procedure PUT (I•T In "034
FMR In FIELD ;DEFAmL FRE;
AFT In FIELD FAULT AFT;

227

DACS4OxS6 User's Guide
linplementaion-Dependent Characteisiscs

Z In VIEWD :- DEFAOLTEPF);

procedure GET (FWM In STRIN;
ITEM out OW;.

LAST out POSITIVE);

procedure PUT (TO out STRING.
ITEM In NMN;
AFT In FIELM DUAVLT AF`T;

zp in rIELD I- DUALT WX);

end FIlmý_1;

Prague, PAME;
-- Generic Package for Input-Output of Enumeration Types

generic
type IRO is ')

package ZNMMATIOtIC.1 is

DEFAUrLTVIMT FIELD : 0;
DEFAULT SECTTING TYPE SZT UPPER CASE;

procedure UT (FIL in FiLE _TYPE: ITEM out 01DM);
procedure UT (Irt out 01011;

procedure PUT (FILE FILE TYPE;
ITEM In 0DMH;
RIOTZ ill IED DEFAULT WIDTS;
SET In TYPE SET :DEFAULT-SETTING);

procedure P17T (ITDI in EIMCM
RIOTB in FIELD :DEFAULT %'MMT;
SET in TYPE SET :-DEFAVLT SETTING);

procedure UT (FRO in STRING;
ITEM out 06016;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM In Exam;
SET In TYPE-SET :- DEFAOLT SETTING);

end DIU3CRATZ0N IC;

prague PAGE;

-- Exceptions

STATUSERAOR exception renames IOEZXCEPTIOUS. STATUSEJUMR;
MOOZERROR exception renames IO-EXCEPTIUUS .MODEERROR;*
shpi- EROR exCeption renames I0EXCEPTIONS . MAICERAOR;
USE ERRO exception rename: 10 EXCEPTIONS. USE-ERAOR;
DEvIcE rRORx exception renames IOEXCEPTIONS .DEVICEEZRWRR;

ElRROR exception renames I0O3XCEPTIORS. ENDDERROR;
DATA ERROR exCeption renames IdC EXCEPTIONS .DAiT ERROR
LayapOTRROMR exception renames IOEZXCEIPTIOMS. LAYOOTERROR;

pragma page;
private

type FILE -TYPE is
record

FT : lTEZ :- -1.
end record;

end TEXT-IC;

228

DACS-8O086 User's Guide
impimentanon-Dependet, Chaacteristics

FJU Package IO..EXCEPTIONS

The specificaton of the package IOEXCEPTIONS:

package JOZXCKT•ZNS is

ST&IUS z• : exception;
"NOE ErROR exception;
iRh ItEROR exception;
USX EMOR exception;
DVZCE_ qU : exception;
ID.ROWR exception;

DATh- ERROR exception;
LAYO•u EZRtR exception;

end jOXCZUT1MS;

FS3 Package BASIC-1O

Thc specification of package BASIC-1O:

with 10EXCZPTaICS;

package RUSIC ZO is

type count is range 0 .. integer' last;

subtype positive count is count range i count'last;

function got Intege: return string;

-- Skips any leading blanks, line terminators or page
0- terminators. Then reads a plus or a Sinus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in Item
-- a string containing an optional sign and an Integer
-- literal.

-- The exception DATA -EROR is raised ig the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception E!R1 EROR is raised if the file terminator
-- i read. This means that the starting sequence of an
-- integer has not been met.

-- Note that the character terminating the operation must
-- be available for the next get operation.

function getreal return string;

""t Corresponds to get integer except that it reads according
to the syntax of a real literal, which may be based.

function get enmueration return string;

-- Corresponds to getinteger except that It reads accordLng
-- to the syntax of an identifier, where upper and lower
-- case letters are equivalent to a character literal
-- Including the apostrophes.

229

DACS-806 User's Guide
Implauautnio•iDeendem Charcteristcs

function got item (length : in ntelge) return string;

0Reada a string from the current line and stores It in
-- Item. if the remaiing number of characters on the
-- current lane is leas than leng"h then only these
0- characters are returned. The line termLnator is not
-- skipped.

procedure putItm (atm : in string);

I- t the length of the string is greeter than the current
-maximsm line (Ulnelength), the exception LXYOCTDiR

is-- raised.

-- if the string does not fit an the current line a line
-- terminator is output, then the Item is output.

00 Line and page Length* - AY44 14.3.3.

procedure met line length (to : In count);

procedure set_pa4e length (to : in count);

function line-length return count;

function page length return count;

-- Operations on columns, lines and pages - A4M 14.3.4.

procedure neowline;

procedure skip_line;

function end of line return boolean;

procctu:e noewpage;

procedure skLp,.page;

function end of-Page return boolen•;

function end of file return boolean;

procedure set-col (to in posLtive• count);

procedure setliAne (to in positiveo ount);

function Cal return positivo count;

function line return positivetcount;

function page return posLtLve count;

Character and string procedures.
-0 Corresponds to the procedures defined in Aa. 14.3.6.

procedure getcharacter (itim: out character);

procedure getatrLng (item out string);

procedure get ZLne (Item out string;
last out naturall);

procedure put character (ite : in character);

procedure putatrig (It- : in string);

230

DACS-80z86 User's Guide
JmpemuiaoaDependent Climrcteiszics

procedure put-llfe (Item in string),

-- eaceptlons:

a0ýUDROR : ecepti~on renames I0VIx~tma"S .03 Z2MOR;
UvZC;zmm except Ion roname IjflWzxcmas.czvjcz-zamu

aiD ERPoR e"Cept ion renames rZOEXCT70KS. DIV RROR
DAzkAm "RO :Scapt ion renames z0 EXvTIONs DATA IzmRRO
L&YOUT ERROR exception renames 10ZEZLIOUS. LAYOUT ERROR;

end UASZCZO;

F.8.4 Package TERMIAL-DRZVER

The specification of package TERMINAL-DRIVER:

package TZMCZIIIADRXVER is

procedure put-character (ch In character);

procedure get character (ch out charactar);

private

pragma interface (AMSIS put-character);
pragma int~rfaces-poll lag put character. DlXPzfvut-character*);

prop"a Interface (ASXSE. get character);
pragma Intorfaceapellag (get caharacter, O1Iag??get~char-acterl);

end TZDMWIDpxVrm.

F.M. Packages SEQUENTIAL-10 and DIRECT-1O

The specifications of SEQUENTIALJO and DIRECTJO are specified in the ARM:C

Since files are not supported the subprograms in these units itaise USE-.ERROR or
STATUS...ERROR.

231

DACS-80486 User's Guide
Imzpemematon-Depoxderu Characteriscs

FJ, Package LOW-LEVEL-1O

The specification of LOW-LEVEL_1O (16 bits) is:

with SyStten;

package I LzvzL0 is

subtype portaddress is Sytem. Onsignedord;

type 11io0 Is new integer range -128..127;
type 31iLo lS is new Integer;

procedure send-control(device in port_address;
data : In Syst--.byte);

-- unsigned I bit entity

procedure send control(device in port address;
data In System.Wasigned~ord);

-- unsigned 16 bit entity

procedure sendcontrol(device : In port-address;
data : in 111o8);

-- signed I bit entity

procedure send control(device : in port address;
data In 11 ioE);

-- signed 16 bit entity

procedure receive eontrol(device in port•address;
data : out System.syte);

-- unsigned I bit entity

procedure receivecontrol(device : In porta•ddtess;
data : oU systm.Onsignedlord);

-- unsigned 16 bit entity

procedure receive -control(device : in portaddress;
data : out 11 4io);

-- signed I bit entity

procedure receive.control(device : in portaddcess;
data out llo1016);

-- signed 16 bit entity

private

pragma inlinen(send-control. receive control);

end LOWL Z OZi0;

The specification of Lalý_Llý_1ZO (32 bits) is:

with SYST ;

package LCOWLEVZL..IO is

subtype port address is Systam. Onsignedlord.

type 1 6-oU8 Is new shortinteger range -120..127;
type Uio-16 Is new short integer;
type 11_Lo.32 is new Integer;

procedure send control (device : In port add-•es;
data : In Systemil.yte);

-- unsigned 4 bit entity

procedure sendcontrol(device : in port address;
data in System.Onsignecdord);

232

DACS-80x86 User's Guide
SOa-Depaend Characterstcs

-- unsigned 14 bit entity

procedure send.control (device In port address;
data in System. UnsignedWord);

-- unsignedc 32 bit entity

procedure sendcontrol(device In portaddress;
data In 11108);

-- signed I bit entity

procedure send control (device In port address;
data i. 11 o_16) ;

-- signed 1I bit entity

procedure aendcontrol(€device In port address;
data In 11 io_32);

-- signed 32 bit entity

procedure recelve control (device In portaddress;
data out System.byte);

-- unsigned 1 bit entity

procedure receive controli(device In port address;
data out System.OnsignedWord•;

-- unsigned 14 bit entity

procedure receivecontrol(device In portaddress;
dat~a :out Systea.Unsigned~Uord) ;

-- unsigned 32 bit entity

procedure receive-control(device In port-address;
dtata :out l1_to_8);

-- signed 32 bit entity

procedure recelve ontrol (device ln portaddress;
d~rata out lli1o 14);

-- signed L1 bit entity

pr9oceduce Ceeive controln(device in por address;
d•at : outlli1_o 32) ;

-- signted 32 bit entity

pri£vate

pragme in~lne(send control, receive control) !

end LOw LZVKrL30;

F.9 Machine Code Insertions

The reader should be familiar with the code generation stategy and the 80x86 instruction set to
fully benefit from this section.

As described in chapter 13.8 of the ARM (DoD 831 it is possible to write procedures containing
only code statements using the predefred package MACHINECODE. The package
MACHINE-CODE defines the type MACHINEINSTRUCrION which, used as a record aggregate,
defines a machine code inserion. The following sections list the type MACHINE-INSTRUCTION
and types on which it depends, give the restrictions, and show an example of how to use the
package MACHINE-CODE.

233

DACS,4Oz86 User's Guide
Imlene -znDependent Characteristics

F3.1 Predefined Types for Machine Code Insertions

The following types ane defined for use when making machine code insertions (their type
declarations are given on the following pages):

type opcodejtype
type operand-tyPe
type mgiste..type
type seginent-Mgister
type machinejrmzucuton

The type REGISTER-.TYPE defines registers. The regsters STI describe registers on the floating
stack. (ST is the top of the floating stack).

The type MACHVIEEJNSTRUCTION is a discrnminant reord type with which every kind of
instrction can be described. Symbolic names may be used in the fonn

name 'ADDRESS

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386/80486 addresses. In case of other
targets. thee scale factor should be set to "scale-l".
type isod tye (

- OTU istructions:
McAM, .AA, MM.3A. 1miOC, miOCD, miAND. a CALL,

a ciALi..
-calf, 0aCLC. LCO skcCL. mci:. W m ac. 3m, mo-ws. eMC . sti,.

m-OAS xi*OZC. inOZYV okLT, zmXZY, sý_ mL:. -nsc, m~at
mIPTO. mZiVZT, stJA, 8aJAR. O33 Ra 33. skXi. U.JOCI,- 3*.
MIX.. Ca3. .3?. 3L. ma-ja. LM3Ua, OVM1, .31132,ý V.-
a X!. sk-1G. sk11GZ, 31VUL. I3311?., sk330. 8m311?. NL1. qA.

301J. R.31. aI~il, M.310. mis~, ORZ .3W. skLATML. a
mius. e-Lim. LL=, sk a1005. aLOO. a-LOWLt

13LOOP1E, *_LomPz.
a WOOPZ. MLNOV, uRMM~, ým~L. uýNtO, 31101.P 3110?. mOM.t ILI
mi-", I uPOn. a Puss. misu-OSr. a MCL, aMM~. MaciL. m-RM.

3351O, sM13. AgRUvt. amU!. smMP=, e)5T. mT"P,
ma;-L. amýSiA. mauiX. Mama. 1ýSsIE ma CAS, maSC. aLSTO, ILP.
.5708. e_5011, MWZS, -OWAX. R-XcNG. OCXuT. kXOM.

-- 8047/90187/80287 rloating Point Processor instructions:

1aFABS. M-FADO. miTOCO. mFTACOP, saFILO. OJOaP. 8FcUs,
uFIICLEX. 13COM. skFTCO. M~fC01, srCoO. MIC01WP, amFD3CSTP,
is-oxv, mjDZYD, aVDZV, aFOIVM. aMmFZM, a ForaI, armlhZ
aflAOO, mýFXADO. mlrCOH. mFCc. - FPc01w. - FZcQC, mFZDrv,
a;,FzDYD x.FDZM. a JzMDZVO 1mjzW, sml! LoC a! ri~o. zrmuz,fl
a;jracw. mrxxcsTp. winmrn. mt!FS?, sL!xsTo.emZs?1, mfll?~Pa,
mF-rxsTLi aFUD mf! xr's=D, mrisma. a rzs==, amjW, mI LDO.
01mOWCW. MJr~WUW. mjý.WLG2. mJTWU9. oClDL21. smjLDLZT.- MLOS1.

aVW Omjza. m.1i nemW e an1= 0117. 01U0W. *mFPATAM,
miami. , sk2*3m. 33311013? aFUSM. mJrSAVU. EuJscALE $JSUTIU,
a F90", 375?.T M 7320, mtaTW1C, aFSTWY.V In i mFSTP, a MD.
m75253m, m5251011, n3503. wmSOUO. scrU t.-SOI". 031 *FsOMp.
a tSOMl a 125. mFISX, mFXM,. 13MC. kmjXIUCF. -kTLZX.
narTai.I s.pxmi,

-- 0186/90286/60386 Instructions:
-- Notice that soon imnediate versions of the 8084
-- Instructions owly emist on those targets
-- (Shifts. rotates, push. una....)

s3001100, ok.25.TS smIT. a 10S. miii. 3j.ZAV9K, ILO
m-LMh? MLiSLI :="I5 wmIoPA, Om10A. M3500?. sk10?,

234

DACS-Ox86 User's Guide
Imp~mcm~onDependem Characteristics

Is 1 bit always...

kA 5W, maSM. ai-Th. aVEA. la ,

-- the. $0364 specific instructionsI:

Skm&A, m5-ZThZ, .55ThM, mSUTIL 11355C, .552!,
aks= 532. S52M, a-SET, k.52.S!, msMA. a -StTNAE.
minus.m .532335, ORinuc. .kSZuNZ. U 5523G
minu2M. M.5323?, akSzITnLZ .53230. aýSETNP, USETS.
IM5MM It-m. .5320 ý_zv, 35321.O a~lZ -520 .555.

mSITS, 0!mW. .333, skT maSTC, .521,
m-2. LFS. a 143. a L3. a PamI. a NOV51,
m-CR NoOM, a9Nov2, .53WL, .5330D,

-- the 00347 specific instructions:

aV M MUýJMaVCaW, SJOCOM, m-FPRU1. .7523, NaFCOS,
a-rszom~,

-- byte/w ord/dword variants (to be used. when
-- not deductible f rom context):

1ýaWBCS aADWN, mal=o skA 005. maDW £003. 3*000
a *3303, a 1303,w _aMD m1100, .523.D a 30, 5C.
aSBCD, .3233. a 5230, .5283, .3230, A-Calm
a-CM09, -McNeI MRCOG, MC*3B, m-OV, *ýOPD,
ak-CSS. 30,53S. a 0,50, a-DECB, a-DECV, m-OCO),
" Mow, "mOZW 07bZV, m-zozva, .zozvuv, M-zzve,
aINOLS, a 1330w, .130W, azkC5, M.13My A-I=C,
aZUNSS. aiSW. afliso, a L=SX. aýLOOSV, a LOOSO,
a-NoV, aOLW," a-PVO, a3~S NQOVSK, a NMOV5
I~VOS33 st-OVSMi, MLMoyfl, IvOMMXV aýN= aOl .nK
a-MLO, .3333, MOWSI, .3330. .3023, i-NM:W
a-M 3020,I aLW 035.Z -013,S3 .03, 0033,00
a-UTV 0020, a"13, 1lOPM, Nu105NM. lkOS:NO, aICS,
aRICL3, maRCT, RLSM1, aRRCAN., a IeO SLAMS.
a 303.3, sk30W, m301=3 I.3033, skAM 3030 .53.
a-SALV aSALD, OR-Sam, OaSAI, sL5*80. .533.5.
ASL.nKP XJLDVK aSHXB. a.SMa, ik53803, .5355
25353,O m555.NW maScA, a0ýSCAIN, akSCASO, 35055.T
RL52053, .52050. a 5033, M5053. .5050, AL23525,
aLTzS2W, .23520. .1015, .1033,I .1030, A.0*2*8
a 0ATAN, Ik0*2*0.

-- pecial * instructions': a label, a reset,

8081 tem real load/store andjc~p: oL3.02, wjSTIPT);

Vrages page;
type operand..type is I none. s- o operands

iimediate, -- one imediate operand
register, one register operand
address, -- one address operand
system-address, -- one laddress operand

name, -CAL" name
register iomediato, -- two operands

-- destination Is
-register

-- source is Lamediate
registerýreqister, -- two register operands
reqisterýaddress, -two operands

-destination is
-- register
-source Is address

addressreq"ister, -- two operands

235

DACS-80x6 User's Guide
Lmpiematiion-Dependrk t Cuacteristics

-. destination is
-- addressl

Saouce is register
registerosystemaddress. -- two operands :

-- destination is
-- register
-- source is 'address

systseo address regAiSteo, two operands :
-- destination is
-- address
-- source is register

address isdmwatn. two operands :
-- destination is

-- address
-- source Is Immediate

systeskaddreesSmedito. 0- two operands
-- destination is
-- 'address

-- source is ImNdiate
Imediate register. -- only allowed for OT

-- port is ImedLate
-- source is register

aimediateLOedLate, only allowed for

register registorimsediate, -- allowed for D=Ls.
-- SlRDim. SELDI

register addcress ieowdlate, allowed for DWLim
register system addrossmmdiate, -- allowed for DMWLI

addressregIstn-imedIate, -- allowed for SiVDiem.
-- SE•Laim

systemaddrceCsseg2stor-iM ate -- allowed for SDVOLm.
-- SIILDM

type registeretype is (AX, CX, OX. DX, s5p, D, S1, 01, -- word regs
AL. CL. DL. DL. Al. CL, 03. 33, -- byte regs
ZAX, EC=. =OX. IDX, tn. ••D., CSZ, D0.-- dward re-g
ES, CS, Si, OS. FS. es. -- selectors

axsz1 x, DX, ap 3s1 Roz0, -- 808o/0186/80286 combinations
5?, SYi. iT2, 1ST3. floating registers (stack)
5T4, ITS, STS, 7.
nil);

-- the extended registers (FAX .. 1z0) plus r3 and GS are only
-- allowed In 80386 targets

type scale type Is (scaloe., scale_2. scalei, scale8);

subtype machinestriLng is string(l. •100);

pragma page;
type machine Instruction (operandkind : operandtype) is

record
opcode : opcodetype;

case operand kind Is
when l dmedlate ->

Ismaedato: integer; -- Iwmedi&te

when register -
r register r: gsterýtype; -- source and/or destination

when address -)

"eqment, : register type; -- source and/or destination
aaddress8base :eg:isteortype;
aaddressIndex reqlstere=type;
asaddresssCale scale type;
aýaddress offset : integer;

when system address ->
sacaddress - system.address; -- destination

236

DACS-WUX60 User's Guide
Implemermation-Dependerit Charcteristics

when nam -)I
n st ring : ambine a tring; -- CALL destination

when register immediate "z
rilýreqlster-to register -type; -- destination
riiinediate :integer; -- source

when registezr regiter -
FrrregIster-to register type; -- destination
rrregiLsterf from register type; -- source

when register address -2,
rearegi~ster to :register type; -- destination
raaeOqmt register type; -- source
r__aaddreassbase :register type;
r aaddress index :regi.Ster type;
iiaaddress-scale scale, type;
r-aaddress of fast : ntege;c

when addresvsregister
arsegeen~t : register type; -- destination
a r-address base :register type;
aFaddressindex register type;

ar-address -scale :scale type;
a r.addremsaoffset integer;
aj;rregsterf from register type; -- source

when regIster system address -Ii
r~saregister-to register type; -- destination
r-saddrevs system.address; -- source

when system _address register ->
:saraddress :system.address; -- destination
sa, rorg~from register type; -- source

when address lemadiate -
aiýS~pegmt register type; -- destination
AIddrvss base register '-type;
aiddzess Index register type;
aiLaddrese scale :scale type;
ai1address offset. :Integer;
aii-.0ediate integer; -- source

when systse-address iamediate ->
sa&iaddress systm.address; -- destination
sa~imiediate L nteger; -- source

when invediate register a>
I-rixmmediato Integer; -- destination
i._ýrregister :register type; -- source

when izulediate imediate ->
iI.iizmediatal integer; Lumiediatel
I-.iiiediate2 integer; Im iediate2

when register -register ixmediA~t* ->
rriý_,registerl register-type; -destination

;rriregister2 register _type; -- sourcel
r-riiine20diato integer; -- sourc*2

when register address iminediate ->
raiegit: register type; -- destination

r-aise-e : register -type; -- sourcel,
r aiLsddress base register _type;

raiaddresss index register type;
Lai_1addrsss seale scale _type;
r -ai~address offset: integer;
rajJImmefiate integer; -souboel

when register system address lemediate ->
rýSajiregister :register type; -- destination
addrIO system. address; -- sourcel,
rsa@-Iiinediate :integer; -- sourcea

237

DACS-8Ox86 User's Guide
Implemaatzion-Dependern Characntistcs

when addreaa register- 4e~to "
ar is.seqmnt : register type; -- destination
a.cl1-address base register type;
eri1 addiessindox : register type;

rli addre.ssscale : scale-type;
Sr a"ddress offset: integer;

arli-reqistesr register type; -- sourcel
a r- i 1:ediate : integer; -o source2

when system addroes roeqst~r Jimedlato ->
so r I address syst8n.a.dxess; -0 destination
sa -r iregqlster registar-type; -- sourcel

sari iinmediate Integer; -- source2

when others ->
null;

end case;
end record;

end machineo ode;

F.9.2 Restrictions

Only procedures. and not functions, may contain machine code insertions.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object. a formal parameter, or
by static renaming.

2) x is an array with static consutaints declared as an object (not as a formal parameter or by
renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

The mrCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

m_label: defines a label. The label number must be in the range I <= x <= 999 and is put
in the offset field in the first operand of the MACHINEINSTRUCTION.

m-reset: used to enable use of more than 999 labels. The label number after a mRESET
must be in the range I<=- x <= 999. To avoid eirrors you must make sure that all
used labels have been defined before a reset, since the reset operation clears all used
labels.

All floating instructions have at most one operand which can be any of the following-

"* a memory address
"* a register or an immediate value
"* an entry in the floating stack

238

DACS4O0x&6 User's Guide
Implementation-Dependent Characteristics

F.93 Examples

The following section contains examples Of how to use the machine code insertions and lists the
generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code insertions as shown:

NVAX. 7
MW CX. 4
M AX, CX

136 1
it 2
MgV =. Ax

1: ADO AX, C
2: MOW SS: (31.0!). AX

package eX&aP10e C is

procedure test -labels;
pragma Inline (test~labels);

end exawle14C;

wuith WAHInK COOK;' use MA=lNZNK COOK.;
package body example MC Is

Procedure test labels is

begin

jMAClINK ZNSThOCUON, (registerine Mdi at*. UNO'J, AX. 7);
MACRINIK_--h3VThUCZN' (register iMedite.6 a-Nov. cX, 4);
MACXffISN3ROC!ZOW (reis"ter register, a-MOP AX, CX);
MhCEZNK3N-jSR0C-.OV' (iinediate, a -JO. 1);
mheana NSfUTROCTIONW (imediaete saJZ. 2);
MACgrfi-r6SlT!~oN' (register _register. Unmov. cx. AX);
MWACUDIEIC mOCTRVI0N (Iinedists, mýIsbel. 1).
M4ACUNINK STRUCTION' (register register. n7ADD, Ax, cx);
MAClINK INSThOCTION' (immediate4. u label, 2T);
MAClINK ISThUC.-ION' (address regis-ter. M MM, SS, 3P.

all, scaiel. 0, Ax);

end test labels;

end examiple MC;

7.9.5 Advanced Topics

This section describes some of the mome intricate details of the workings of the machine
code insertion facility. Special attention is paid to the way the Ada objct are referenced in
the machine code body, and various alternatives are shown.

239

DACS-80x86 User's Guide
Implementation-Dependent Characteristics

F.9J.I Address Specifications

Package MACHINE-CODE provides two alternative ways of specifying an address for an
instruction. The first way is referred to as SYSTEM.ADDRESS and the parameter associated
this one must be specified via OBJECT"ADDRESS in the actual MACHINECODE insertion. The
second way closely relates to the addressing which the 80x86 machines employ: an address has
the general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The
default value NIL for segment. base, and index may be selected (however, if base is NiL, so
should index be). Scale MUST always be specified as scale_l. scale_2, scale..4, or scalec8. For
16 bit targets, scale-l is the only legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.5.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be
referenced by the machine insertions using the SYSTEMADDRESS or ADDRESS formats
explained above. However, there is a great difference in the way in which they may be specified;
whether the procedure is specified as INLINE or nOL

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEM.ADDRESS form. This will be dealt with correctly even if the actual values are
constants. Using the ADDRESS form in this context will be the user's responsibility since the
user obviously attempts to address using register values obtained via other machine insertions. It
is in general not possible to load the address of a parameter because an 'address' is a two
component structure (selector and offset), and the only instruction to load an immediate address
is the LEA, which will only give the offset. If coding requires access to addresses like this, one
cannot INLINE expand the machine insertions. Care should be taken with references to objects
outside the current block since the code generator in order to calculate the proper frame value
(using the display in each frame) will apply extra registers. The parameter addresses will.
however, be calculated at the entry to the INLINE expanded routine to minimize this problem.
INLINE expanded routines should NOT employ any RET instructions.

Pure procedure machine insertions need to know the layout of the parameters presented to. in this
case, the called procedure. In particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. When not INLINE a block is created around
the call which allows addressing of parameters, and code for exiting the procedure is also
automatic.

The user takes over the responsibility for correct parameter addressing. The rules of Ada
procedure calls must be followed. The calling conventions are summarized below.

240

DACS-80x86 User's Guide
Implementation-Dependenrt Characteristics

F.9.53 Parameter Transfer

it may be a problem to figure out the correct number of words which the parameters take up on
the stack (the x value). The following is a short description of the transfer method:

INTEGER types take up at least I storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. In 32 bit targets. 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word. TASKs are transferred as
INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered scalar values and consist of a 16 bit segment value and a 16 or
32 bit offset value. When 32 bit offset value, the segment value takes up 2 words the high word
being the aligment word. The offset word(s) are the lowest, and the segment word(s) are the
highest.

RECORD types are always transferred by address. A record is never a scalar value (so no
post-procedure action is carried out when the record parameter is OUT or IN OUT). The
representation is as for ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the army is constrained, only
the array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constraint. In this
case, the two ACCESS values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition
of an INTEGER bit offset as the highest word(s):

+H: BITOFFSET
+L: DATA-ADDRESS
+0: CONSTRAINJT-ADDRESS - may be missing

The values L and H depend on the presence/absence of the constraint address and the sizes of
constraint and dat addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If
access is required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.5.4 Example

A small example is shown below (16 bit target):

procedure unsignedadd

(opt : in integer,
op2 : in integer.
res : out integer);

241

DACS-80x86 User's Guide
implemename on-Dependent Chareustics

Notice that machine subprograms cannot be functions.

The parameters take up:

opl : integer • I word
op2 : integer I word
res : integer : I word

Total : 3 words

The body of the procedure might then be the folWowing assuming that the procedure is
defined at outermost package level:

procedure unsiqned add
(OIp in Integer.
op2 in integer;
res : Ot integer) is

begin
ptagem abs•tract acod nsert Ions (true);
aaiLnstr' (aa Create Block,3.1.O.0,O). -- x - 3. y - 1
&Aainstr" (a Endo declpart. O. O, O, O. O;

pragum abstract acode insertions (false) ;

machine instruction' (register system address, a MOV,
AX. opI'address);

machine instruction' (roegister systswaddoess, a ADD,
AX. op2' addrcess)

machino instruction' (imediate, mIJNC. 1):
maahine instruct- .on' (fimmediate, uVTZ, 5) ;
machine instruction' (Lmedate, m label,1);
machine--n•trUCtion' (systlem -addrlssregIstar, m mOV,

resl'address, AX):

pragma abstract-&code insertions (true);
aainsstr' (aExt suprgz•O.O,Onll arg, ni.1 rag);-- (2)
aaý nstr' (Aa 4Set block level.,0, 0,0,0); -- y-1 - 0

prague abstract acod. insertions (false);
end unsigned add;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the
above 'machinejnsiction' statements am required. Please notice that there is a difference between
addressing record fields when the routine is INLINE and when it is not:

type rec is
record

low : integer.
high : integer,

end record;

procedure add_32 is
(opi : in integer.
op2 : in imeger,
rs : out mc);

The parameters take up I + I + 2 words a 4 words. The RES parameter will be
addressed directly when INLINE expanded, i.e. it is possible to write:

,.2

DACS-80xg6 User's Guide
implememation-Dependent Characteristics

machineinstuction'(sysem_addrssregister, mMOV,
res'address, AX);

This would, in the not IfLINED version, be the same as updating that place on the stack where
the address of RES is placed. In this case, the insertion must mad:

machine_ins ruction'(ngistrsys mmaddmss. mLES.
SI. res'address)

-- LES SI,IBP+...J
machine.nstniction'(addm.s_egismr. mMOV,

ES, SI. nil, scale_l. 0, AX);
- MOV ES:SI+O.IAX

As may be seen. great care must be taken to ensure correct machine code insertions. A help
could be to first write the routine in Ada, then disassemble to see the involved addressings. and
finally write the machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code for the procedure itself. This
code will be removed when the nocheck option is applied to the compilation. Also not
INLINED procedures using the AAINSTR insertion, which is explained above, will automatically
get a storage.check call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the
created frame, which may freely be used by the routine as temporary space. The 8 bytes are
located just below the display vector of the frame (from SP and up). The storagecheck call will
not be generated when the compiler is invoked with -nocheck.

The user also has the option NOT to create any blocks at all, but then he should be certain that
the return from the routine is made in the proper way (use the RETP instruction (return and pop)
or the RET). Again it will help first to do an Ada version and see what the compiler expects to
be done.

Symbolic fixups are possible in certain instructions. With these you may build 'symbolic'
instructions byte for byte. The instructions involved all require the operand type NAME (like used
with CALL), and the interpretation is the following:

(name, mDATAD, "MYNAME) a full virtual address (offset and selector) of the
symbol MYNAME (no additional offset is possible).

(name, mDATAW, "MYNAME") the offset part of the symbol MYNAME (no additional

offset is possible).

(name, mDATAB, "MYNAME") the selector value of symbol MYNAME

In inlined machine insuctions it may be a problem to obtain the address of a parameter (rather
than the value). The LEA instruction may be used to get the offset part. but now the following
form allows a way to load a selector value as well:

(systemaddress, LES. param'address) ES is loaded with the selector of PARAM. If this
selector was e.g. SS, it would be pushed and popped
into ES. LES may be substituted for LES and LOS
for 80386.

243

DACS-80x86 User's Guide
hmpimnteaion-Dependent Chara•eristics

F.10 Package Tasktypes

The TaskTypes packages defines the TaskConmolBlock type. This data sinactUre could be useful
in debugging a tasking pWgram. The following package Tasktypes is for all DACS-0x86 except
for DACS-.8386PMIDACS-80486PM.

with Systm;

package Tasklypss is

subtype Offset Is S3ysteM.0nsLgned.lrd;
subtype Slowad is system.0signel"Ord;

type Taskmatry IS new System.Onsignedlord;
type .ntrylndez is new Sysatm.OnsLgnedhord;
type Alternativeld is new SyStem.Onsigned8ord;
type Ticks is new Syatem-.ord.
type 3o01 Is new Soolean;
for ool' size us* 4;
type Qentg is new System.Onsiguedlord;

type Taskstate Is (initial,
-- The task is created, but activation

-- has not started yet.

Engaged.
0- The task has called an entry, and the
-- c•sl is now accepted, I*. the rendezvous
-- is in progress.

Running,
Covers all other states.

Delayed.
-- The task awaits a timeout to expire.

EatrycalllngTImed,
-- The task has called an entry which
-- is not yet accepted.

EntryCallingqnconditional,
-- The task has called an entry unconditionally,
-- which Is not yet accepted.

SeectIngqTimed.
-- The task is waiting in a select statement

-With an open delay alternative.

SelectingOnconditional,
-- The task waits LA a select Statement

e- entirely with accept statements.

SelectingJezulnable,
-- The task waits In a select statement
-- with an open terminate alternative.

Accepting,
-- The task waits In an accept statement.

Synchronizing,
-- The task waits In an accept statement
-- with no statement list.

completed,
-The task has completed the execution of

-. Its statement Uist, but not all1 dependent
-- tasks are terminated.

Terminated).
-- The task and all Its descendants
-- are terminated.

244

DACS-lWxS6 User's Guide
hmpiememanatin-Dependes Chaacteristics

for TeakState use (Initial -3 140000
gneqod" -3 16#0000
Running -3 160100
Delayed *'. 160110
Eatrycallipq!Imed -> 160200
gatryCallinguacoaditional, -0 160200
SeloctlngTLUmd 2.160310
selectingunconadtional *ý, 16#39#
SelectSagTorminable -> 14041#
Acceptinq -)P lg604A
Synchrasizinq -> 160530#
completed -3 1605CO
Terminated -3. 1646401;

for ?askStateoD a uic 4 ;

typo ?aaknypODSaC:pxo: ia
record

Priority Sysetn.p:ientty;
eotrypouInt axnt;;
block-1d Slock~d;
firatounrýaddress Sysem .Addzoaa;

oatry-Poer Dxntq;
coed address SyutM.Addftaa:
stacl-aL20 Syutem.0mord;

-dummy Integer;
stack segment siz*: glntq;

end ccird.

typo Acc~askTYPeOeaC:ptor is access TaakTYPoQoC1GiCPtOC;

type UlXSaVeAroa is a::ay(1. .401 of Syatem.Onaigneezod;

type flaqaType is
Coco"d

3V25laq MCIl;
Inteoruptrlag : goa;

"nd record;
Prague pack (frlagaypol;

typo StatoaTypo ia
record

state TaakStateo;
Laabnocmal goa00;
La~activated : Dcc;
failure Bool;

end record;
pragma pack(Statta~ype);

typo Wcýtypo ia
reord

bp offseot;
add: System.Addzoaa;

end reord;
pragms, pack (ACFtype);

prague pago.
typo ?askeontrolklock ia

record
son: Syutmn.smfipbore:
Lanbitor intogo:;

-Delay quoao handling

dnent System.Task~alue
d@oV Sysetm.TaskValus
Maolay TickLs

-- Saved avilators

SS System.0naLgnederd

245

DACS-80z86 User's Guide
ImpauutuanDqwxkdm Owcterliicsd

t of fset

Ready04 queue MbanLin;

nextt Systin. TaskValus ;

Semaphore handling

seant System.TaskValtae;

clazirity fields

prionity :System.Priority.
"sVedjerIoeity Systin.ftierity;

"- iecelleaneus fields

time-slice Systin.Onsign.eod~a
flagsrlaqsType;

30adycomat. Systemuord;

-- Stack Specification

stack~staxt, Offset;
stack .end Offset;

-- State fields

states StatesType;

-- Activation handling fields

activator System.Tastvalme;
act chain :System.TAft~lue;
nemgchain System..?asktalue;
n no~tact System. word;
act- bl~ock S lock~d;

-Accept quota. fields

partnfer Systm.TaskValue;
next~acta.: Systw. TaskValve;

-- Zatq queue fields

next caller :Systes.TaskValuo;

-- Rendezvous fields

called~task 3ystmm.TaskValu*;
isAsynch :integer;

tasketry T asmtntrq;
entqi..ndex gatryladSe.
matqyassoc Syetem.Address;
C&I-allam syutem.Adiress;
alt id Alternativexd;
ea4 Ld Systm.t.xceptioaid;

-- Dependency fields

pazenttask :Systet. Task~asu;
paenet block :aokd
cbldtAj~k :Systaa.Taskwalum;
next child :System. TakValue;
firiitabild : System.Tasmiaue;
prew child : System.TamitVaLue;
chli...act : system.USIG*
block-act :systam.wo";
teramoated task: System. Taskalue;

-- Abortion handling fields

busy :System.uact;

246

DACS-Wx86 User's Guide
Implememtion-Dependen[Characteristics

-- Auxlla-Zy fields

ttd : AccT&eklyp4eScrLptor;
Tirstcallor System TaskValuo,

-- Run-•?io System fields

Ac: ACT type; -- cf. Oaer's guide 9.4.2
SQfizst Integer; -- Only used in M
lsearict : ntoer; -- Only used In No
TlockinqTask Systea.TaskValue; -- Only used In FM
1P3.Cklo ngqak System.Taskvalue; 00 Only used In MS
collection : Syusti.Address;

partition : Integer;

TaskClleckila t : Offset; -- to assure inlino storage check
LastUamption System.DloU"; 2- 3 16 bits
SavedlAdaddr Offset; -- to 1Imove reodetmo a

-- NIX save atea

-- When the application Is linked with -nm. a special
-- save area lot the NIX Is allocated at the very end
-- of every TC2.

-- case WIX Present is
0- when TWU a> Ulsave : UlXSaVeJcea;
-- when rAU -> null;
-- end case;

end record;

-- The following is to assure that the TC% has the expected size:

TM.size : constmat DlflQM :,- TskControlJlock' size / 8;

subtype TCS ok value Is ZIT3rZ range 136 .. 136;
TVD..k : costant ? ok value :- TuakControlbllck'-sIe / 8;

end ?askTypes;

F.11 RMS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking appik~adons by means of Rae Monotonic Scheduling
(RMS). RMS capability is purchased optionally, and is thus not included by default Please contact
DDC-l for mom informadon mgarding RMS and your system. RMS allows the programmer to
guarantee properties of a tasking system. i.e. that tasks will meet their hard deadlines. The RMS
tasking Ls selected by specifying -mm to the Ada link command.

247

248

